A converter of circularly polarized laser beams into cylindrical vector beams based on anisotropic crystals
V.D. Paranin, S.V. Karpeev, A.P. Krasnov

 

Samara State Aerospace University, Samara, Russia,

Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
An optical system for converting circularly polarized laser beams into cylindrical vector beams on the basis of anisotropic crystals has been developed. Polarization properties and the structure of the resulting beams have been experimentally characterized. The analysis has revealed differences in the azimuthal and radial polarization of Gaussian modes and Bessel beams. Ranges of variation of the optical system parameters to form different types of polarizations with different amplitude and phase distributions have been identified.

Keywords:
diffractive optics, birefringent crystal, cylindrical vector beams, azimuthal polarization, radial polarization, higher-order laser modes.

Citation:
Paranin VD, Karpeev SV, Krasnov AP. A converter of circularly polarized laser beams into cylindrical vector beams based on anisotropic crystals. Computer Optics 2015; 39(5): 644-53. – DOI: 10.18287/0134-2452-2015-39-5-644-653.

References:

  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics 2009; 1: 1-57.
  2. Oron R, Blit S, Davidson N, Friesem AA. The formation of laser beams with pure azimuthal or radial polarization. Applied Physics Letters 2000; 77(21): 3322-4.
  3. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S, Davidson N. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Applied Optics 2007; 46: 3304-10.
  4. Yonezawa K, Kozawa Y, Sato S. Compact laser with radial polarization using birefringent laser medium. Japanese Journal of Applied Physics 2007; 46: 5160-3.
  5. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S, Davidson N. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Applied Optics 2007; 46: 3304-10.
  6. Tidwell SC, Ford DH, Kimura WD. Generating radially polarized beams interferometrically. Applied Optics 1990; 29: 2234-9.
  7. Passilly N, de Saint Denis R, Aït-Ameur K, Treussart F, Hierle R, Roch J-F. Simple interferometric technique for generation of a radially polarized light beam. J Opt Soc Am A 2005; 22(5): 984-91.
  8. Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Applied Optics 2010; 49(10): 1734-8.
  9. Venkatakrishnan K, Tan B. Generation of radially polarized beam for laser micromachining. Journal of Laser Micro/Nanoengineering 2012; 7(3): 274-8.
  10. Fadeyeva T, Shvedov V, Shostka N, Alexeyev C, Volyar A. Natural shaping of the cylindrically polarized beams. Optics Letters 2010; 35(22): 3787-9.
  11. Loussert C, Brasselet E. Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media. Optics Letters 2010; 35(1): 7-9.
  12. Fadeyeva TA, Shvedov VG, Izdebskaya YV, Volyar AV, Brasselet E, Neshev DN, Desyatnikov AS, Krolikowski W, Kivshar YS. Spatially engineered polarization states and optical vortices in uniaxial crystals. Optics Express 2010; 18(10): 10848-63.
  13. Khonina SN, Volotovskiy SG, Kharitonov SI. Features of nonparaxial propagation of Gaussian and Bessel beams along the axis of the crystal (in Russian). Computer Optics 2013; 37(3): 297-306.
  14. Kozawa Y, Sato S. Sharper focal spot formed by higher-order radially polarized laser beams. J Opt Soc Am A 2007; 24: 1793-8.
  15. Khonina SN, Alferov SV, Karpeev SV. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Optics Letters 2013; 38(17): 3223-6.
  16. Tian B, Pu J. Tight focusing of a double-ring-shaped, azimuthally polarized beam. Optics Letters 2011; 36(11): 2014-6.
  17. Soifer VA, Kotlyar VV, Kazanskiy NL, Doskolovich LL, Kharitonov SI, Khonina SN, Pavelyev VS, Skidanov RV, Volkov AV, Golovashkin DL, Solovyev VS, Usplenyev GV. Methods for Computer Design of Diffractive Optical Elements. Ed. by Soifer VA. New York: John Wiley & Sons, Inc; 2002.
  18. Golovashkin DL, Kotlyar VV, Soifer VA, Doskolovich LL, Kazanskiy NL, Pavelyev VS, Khonina SN, Skidanov RV. Computer Design of Diffractive Optics. Ed. by Soifer VA. Cambridge: Woodhead Publishing Limited; 2012.
  19. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of DOEs beams. J Opt Soc Am A 2011; 28(10): 2115-23.
  20. Khonina SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter. Optics Letters 2012; 37(12): 2385-7.
  21. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. Journal of Optics 2015; 17(6): 065001-11.
  22. Tidwell SC, Ford DH, Kimura WD. Generating radially polarized beams interferometrically. Applied Optics 1990; 29: 2234-9.
  23. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of DOEs beams. J Opt Soc Am A 2011; 28(10): 2115-23.
  24. Khonina SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter. Optics Letters 2012; 37(12): 2385-7.
  25. Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Applied Optics 2010; 49(10): 1734-8.
  26. Khonina SN, Kharitonov SI. An analog of the Rayleigh-Sommerfeld integral for anisotropic and gyrotropic media. Journal of Modern Optics 2013; 60(10): 814-22.
  27. Prudnikov AP, Brychkov YuA, Marichev OI. Integrals and Series. Volume 2: Special Functions. CRC Press; 1998.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20