Characteristics of sharp focusing of vortex Laguerre-Gaussian beams
D.A. Savelyev, S.N. Khonina
Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia,
Samara State Aerospace University, Samara, Russia
Full text of article: Russian language.
PDF
Abstract:
We investigate the intensity distribution of sharply focused Laguerre-Gaussian beams in relation to the uniform (linear and circular) polarization of the beam and the order of the vortex phase. It is shown that to the greatest extent the polarization state affects the longitudinal component of the electric vector of the light field. The greatest visual difference in the total intensity patterns for different polarization types is observed when using a first-order phase vortex. The use of a diffractive axicon improves focusing when compared with an aplanatic lens.
Keywords:
sharp focusing, Gauss-Laguerre beams, optical vortices, axicon.
Citation:
Savelyev DA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Computer Optics 2015; 39(5): 654-62. DOI: 10.18287/0134-2452-2015-39-5-654-662.
References:
- Ganic D, Gan X, Gu M. Focusing of doughnut laser beams by a high numerical-aperture objective in free space. Optics Express 2003; 11: 2747.
- Zhang Z, Pu J, Wang X. Distribution of phase and orbital angular momentum of tightly focused vortex beams. Optical Engineering 2008; 47: 068001.
- Khonina SN, Volotovsky SG. Controlling the contribution of the electric ?eld components to the focus of a high-aperture lens using binary phase structures. Journal of the Optical Society of America A 2010; 27(10): 2188-97.
- Khonina SN, Golub I. Optimization of focusing of linearly polarized light. Optics Letters. 2011; 36(3): 352-4.
- Khonina SN, Kazanskiy NL, Volotovsky SG. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system. Journal of Modern Optics 2011; 58(9): 748-60.
- Chen Z, Pu J, Zhao D. Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices. Physics Letters A 2011; 375(32): 2958-63.
- Huang K, Shi P, Cao G, Li K, Zhang X, Li Y. Vector-vortex Bessel-Gauss beams and their tightly focusing properties. Optics Letters 2011; 36: 888.
- Khonina SN. Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions. Optical Engineering 2013; 52(9): 091711 (7pp).
- Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics 2009; 1: 1-57.
- Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy. Optics Letters 1994; 19: 780-2.
- Niziev VG, Nesterov AV. Influence of beam polarization on laser cutting efficiency. Journal of Physics D: Applied Physics 1999; 32: 1455-61.
- Salamin YI, Keitel CH. Electron acceleration by a tightly focused laser beam. Physical Review Letters 2002; 88(9): 095005 (4pp).
- Westphal V, Hell SW. Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters 2005; 94: 143903.
- Khonina SN, Golub I. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. Journal of the Optical Society of America A 2012; 29(10): 2242-6.
- Kozawa Y, Sato S. Sharper focal spot formed by higher-order radially polarized laser beams. Journal of the Optical Society of America A 2007; 24: 1793-8.
- Khonina SN, Alferov SV, Karpeev SV. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Optics Letters 2013; 38(17): 3223-6.
- Soifer VA, Kotlyar VV, Khonina SN. Optical Microparticle Manipulation: Advances and New Possibilities Created by Diffractive Optics. Physics of Particles and Nuclei 2004; 35(6): 733-66.
- Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Optics Letters 1997; 22(1): 52-4.
- Dennis MR, O’Holleran K, Padgett MJ. Singular optics: optical vortices and polarization singularities. Progress in Optics 2009; 53: 293-363.
- Holbourn AHS. Angular momentum of circularly polarized light. Nature 1936; 137(3453): 31.
- Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A 1992; 45(11): 8185-9.
- Soskin M, Vasnetsov MV. Singular optics. Progress in Optics 2001; 42: 219.
- Khonina SN, Savelyev DA, Kazanskiy NL. Vortex phase elements as detectors of polarization state. Optics Express 2015; 23(14): 17845-59.
- Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG. Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications 2010; 181: 687-702.
- Savelyev DA, Khonina SN. Maximising the longitudinal electric component at diffraction on a binary axicon linearly polarized radiation. Computer Optics 2012; 36(4): 511-7.
- Khonina SN, Savelyev DA. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. Journal of Experimental and Theoretical Physics 2013; 117(4): 623-30.
- Khonina SN, Degtyarev SA. A longitudinally polarized beam generated by a binary axicon. Journal of Russian Laser Research 2015; 36(2): 151-61.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20