Dynamic analysis of optical cell trapping in the ray optics regime
S.S. Klykov, I.V. Fedosov, V.V. Tuchin

 

Saratov State University, Saratov, Russia,
Institute of Precision Mechanics and Control of Russian Academy of Sciences, Saratov, Russia,

Tomsk State University, Tomsk, Russia

Full text of article: Russian language.

 PDF

Abstract:
We analyze forces that act in an optical trap on a biological cell modeled by a dielectric microsphere moving in a fluid. Analysis of the microsphere’s dynamical behavior has enabled key parameters for trapping of the cell to be identified, including the fluid viscosity and the laser beam power.

Keywords:
optical tweezers, optical confinement and manipulation, laser trapping, ray optics model of an optical trap.

Citation:
Klykov SS, Fedosov IV, Tuchin VV. Dynamic analysis of optical cell trapping in the ray optics regime. Computer Optics 2015; 39(5): 694-701. DOI: 10.18287/0134-2452-2015-39-5-694-701.

References:

  1. Zhong M-C, Wei X.-B, Zhou J-H, Wang Z-Q, Li Y-M. Trapping red blood cells in living animals using optical tweezers. Nature Communications 2013; 4(1768): 1-7. DOI: 10.1038/ncomms2786.
  2. Zhong M-C, Gong L, Zhou J-H, Wang Z-Q, Li Y-M. Optical trapping of red blood cells in living animals with a water immersion objective. Optics Letters 2013; 38(23): 5134-7. DOI: 10.1364/OL.38.005134.
  3. Sarshar M, Wong WT, Anvari B. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. J Biomed Opt 2014; 19(11): 115001-1–115001-13. DOI: 10.1117/1.JBO.19.11.115001.
  4. McAlinden N., Glass D.G., Millington O.R., Wright A.J. Accurate position tracking of optically trapped live cells. Biomed. Opt. Express 2014; 5(4): 1026-37. DOI: 10.1364/BOE.5.001026.
  5. Wu Y, Sun D, Huang W, Xi N. Dynamics analysis and motion planning for automated cell transportation with optical tweezers. IEEE/ASME Trans. Mech. 2013; 18(2): 706-13. DOI: 10.1109/TMECH.2011.2181856.
  6. Nieminen TA, Preez-Wilkinson N, Stilgoe AB, Loke VLY, Bui AAM, Rubinsztein-Dunlop H. Optical tweezers: Theory and modeling.  J Quant Spect & Rad Trans 2014; 146: 59-80. DOI: 10.1016/j.jqsrt.2014.04.003.
  7. Sraj I, Szatmary AC, Marr DWM, Eggleton CD. Dynamic ray tracing for modeling optical cell manipulation.  Optics Express 2010; 18(16): 16702-14. DOI: 10.1364/OE.18.016702.
  8. Hu Z, Wang J, Liang J. Experimental measurement and analysis of the optical trapping force acting on a yeast cell with a lensed optical fiber probe. Optics&Laser Technology 2007; 39(3): 475-80. DOI: 10.1016/j.optlastec.2005.11.010.
  9. Liao G-B, Chen Y-Q, Bareil PB, Sheng Y, Chiou A, Chang M-S. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps. J Biophotonics 2014; 7(10): 782-7. DOI: 10.1002/jbio.201300017.
  10. Roosen G, Imbert C. Optical levitation by means of two horizontal laser beams: a theoretical and experimental study. Physics Letters A 1976; 59(1): 6-8. DOI: 10.1016/0375-9601(76)90333-9.
  11. Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 1992; 61: 569-82. DOI: 10.1016/S0006-3495(92)81860-X.
  12. Gu M, Bao H, Gan X, Stokes N, Wu J.  Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy. Light: Science & Applications 2014; 3: 1-6. DOI: 10.1038/lsa.2014.7.
  13. Park BJ, Furst EM. Effects of coating on the optical trapping efficiency of microspheres via geometrical optics approximation. Langmuir 2014; 30(37): 11055-61. DOI: 10.1021/la502632h.
  14. Haghshenas-Jaryani M, Black B, Ghaffari S, Drake J, Bowling A, Mohanty S. Dynamics of microscopic objects in optical tweezers: experimental determination of underdamped regime and numerical simulation using multiscale analysis. Nonlinear Dynamics 2013; 76(2): 1013-30. DOI: 10.1007/s11071-013-1185-0.
  15. Thalhammer G, Obmascher L, Ritsch-Marte M. Direct measurement of axial optical forces. Optics Express 2015; 23(5): 6112-29. DOI: 10.1364/OE.23.006112.
  16. Lee KS, Yoon SY, Lee KH, Kim SB, Sung HJ, Kim SS. Radiation forces on a microsphere in an arbitrary refractive index profile. J Opt Soc Am B 2012; 29(3): 407-14. DOI: 10.1364/JOSAB.29.000407.
  17. Callegari A, Mijalkov M, Gokoz AB, Volpe G. Computational toolbox for optical tweezers in geometrical optics. J Opt Soc Am B 2015; 32(5): B11-B19. DOI: 10.1364/JOSAB.32.000B11.
  18. Kim SB, Kim SS. Radiation forces on spheres in loosely focused Gaussian beam: ray-optics regime. J Opt Soc Am B 2006; 23(5): 897-903. DOI: 10.1364/JOSAB.23.000897.
  19. Dutra RS, Viana NB, Maia Neto PA, Nussenzveig HM. Absolute calibration of forces in optical tweezers. Phys Rev A 2014; 90: 013825-1–13. DOI: 10.1103/PhysRevA.90.013825.
  20. Bashkatov AN, Zhestkov DM, Genina EA, Tuchin VV. Immersion clearing of human blood in the visible and near-infrared spectral regions. Optics and Spectroscopy 2005; Vol. 98(4): 638-46. DOI: 10.1134/1.1914906. 
  21. Im K-B, Lee D-Y, Kim H-I, Oh C-H, Song S-H, Kim P-S. Calculation of optical trapping forces on microspheres in the ray optics regime. J Kor Phys Soc 2002; 40(5): 930-3
  22. Volpe Gior, Volpe Giov. Simulation of a Brownian particle in an optical trap. Am J Phys 2013; 81(3): 224-30. DOI: 10.1119/1.4772632.
  23. Happel J, Brenner H. Low Reynolds number hydro­dynamics. The Hague, The Netherlands: Martinus Nijhoff Publishers; 1983. DOI: 10.1007/978-94-009-8352-6.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20