Influence of eye refractive surface curvature modification on the retinal image quality in the Liou-Brennan eye model
S.A. Degtyarev, A.V. Karsakov, E.S. Branchevskaya, S.N. Khonina, V.V. Kotlyar

 

Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia,
Samara State Aerospace University, Samara, Russia,

Branchevsky Eye Clinic, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
In this work, we use the Zemax software package to study wave front aberrations resulting from modifications of the human eye cornea curvature. The simulation is based on the Liou-Brenann human eye model. The surface curvature and wave front aberrations are described by a Zernike polynomial. We show that defocusing and astigmatism aberrations can be corrected for by means of modification of the cornea curvature using polynomials.

Keywords:
optical model of the human eye, Liou-Brenann eye model, eye aberration, Zernike polynomials.

Citation:
Degtyarev SA, Karsakov AV, Branchevskaya ES, Khonina SN, Kotlyar VV. Influence of eye refractive surface curvature modification on the retinal image quality in the Liou-Brennan eye model. Computer Optics 2015; 39(5): 702-8. DOI: 10.18287/0134-2452-2015-39-5-702-708.

References:

  1. Smirnov MS. Measurement of the wave aberration of the human eye. Biofizika 1961; 6: 776-95.
  2. Howland HC, Howland B. A subjective method for the measurement of monochromatic aberrations of the eye. J Opt Soc Am 1977; 67: 1508-18.
  3. Berny F, Slansky S, Home J (ed). Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments. In Optical Instruments and Techniques. Oriel; 1969: 375-86.
  4. Artal P, Santamaría J, Bescós J. Retrieval of the wave aberration of human eyes from actual point-spread function data. J Opt Soc Am A 1988; 5: 1201-6.
  5. Artal P. Optics of the eye and its impact in vision: a tutorial. Advances in Optics and Photonics 2014; 6: 340-67.
  6. Atchison DA. Recent advances in measurement of monochromatic aberrations of human eyes. Clin Exp Optom 2005; 88: 5-27.
  7. Lombardo M, Lombardo G. Innovative methods and techniques for sensing the wave aberrations in human eyes. Clin Exp Optom 2009; 92: 176-86.
  8. Liang J, Grimm B, Goelz S, Bille JF. Objective measurement of the WA´s aberration of the human eye with the use of a Hartmann-Shack sensor. J Opt Soc Am A 1994; 11: 1949-57.
  9. ANSI Z80.28. Methods for Reporting Optical Aberrations of Eyes. American National Standards Institute, Inc. American National Standards for Ophthalmics 2004.
  10. ISO 24157:2008. Reporting Aberrations of the Human Eye. – Geneva, Switzerland: ISO, Ophthalmic Optics and Instruments; 2008.
  11. Applegate RA, Ballentine C, Gross H, Sarver EJ, Sarver CA. Visual acuity as a function of Zernike mode and level of root mean square error. Optom Vis Sci 2003; 80: 97-105.
  12. Khonina SN, Kotlyar VV, Kirsh DV. Zernike phase spatial filter for measuring the aberrations of the optical structures of the eye. Journal of Biomedical Photonics & Engineering 2015; 1(2): 146-53.
  13. Doga AV. Exñimerlaser cornea microsurgery based on scanning device “Microscan”. Ph.D. Thesis. Moscow; 2004.
  14. Branchevskaya ES. Topographically oriented PRK with excimerlaser device “Microscan Visum” for irregular astigmatism correction. Ph.D. Thesis. Moscow; 2015.
  15. Arba-Mosquera S, Ortueta D, Merayo-Lloves J. Tissue-saving Zernike terms selection in customized treatments for refractive surgery eta. J Optom 2009; 2: 182-96.
  16. WaveLight Oculyzer II. Ophthalmologist system with equipments. User’s Guide. Wave Light Corporation; 2001.
  17. ALLEGRO Topolyser VARIO. User’s Guide. Wave Light Corporation; 2001.
  18. Liou H-L, Brennan NA. Anatomically accurate, finite model eye for optical modeling. JOSA A 1997; 14(8): 1881-91.
  19. Gullstrand A, von Helmholtz H (ed.). Appendix II in Handbuch der Physiologischen Optic. 3rd ed. Hamburg: Voss; 1909; Bd 1: 299.
  20. Bakholdin AV, Korshikova NF, Cherkasova DN. Computer simulation of individual eye optical system [In Russian]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie 2012; 55(4): 68-73.
  21. Kurushina SE, Ratis YuL. Mathematical crystalline lens model, which is properly corresponding its anatomy structure and optical properties of eye system [In Russian]. Computer Optics 2001; 21: 81-7.
  22. Tocci M. How to Model the Human Eye in Zemax. Zemax knoledgebase 2007. Source: áhttp://www.zemax.com/sup­port/resource-center/knowledgebase/how-to-model-the-human-eye-in-zemaxñ.
  23. Zemax® User’s Guide. Zemax Development Corporation; 2005.
  24. The Fringe Zernike polynomial was developed by John Loomis at the University of Arizona, Optical Sciences Center in the 1970s, and is described on page C-8 of the CODE V® Version 10.4 Reference Manual. Synopsys, Inc.; 2012.
  25. Rodionov SA. Base of Optics. Lecture Notes [In Russian]. Saint-Petersburg: NRU ITMO Publisher; 2000.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20