An imaging spectrometer based on a discrete interference filter
R.V. Skidanov, À.À. Morozov, À.P. Porfirev, V.A. Blank

 

Russian Academy of Sciences, Samara, Russia
Samara State Aerospace University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
The article describes properties of the spectral filter Edmund Optics (400 – 700 nm). The filter's transmission function is shown to be essentially different from an ideal form claimed by the manufacture. A spectrometer based on this filter is considered. It is shown that even with the filter's spectral transmission function not being very good, it is still possible to generate the desired spectrum with an error of not more than 13 %.

Keywords:
imaging spectrometer, spectral filter, tunable laser.

Citation:
Skidanov RV, Morozov AA, Porfiriev AP, Blank VA. An imaging spectrometer based on a discrete interference filter. Computer Optics 2015; 39(5): 716-20. DOI: 10.18287/0134-2452-2015-39-5-716-720.

References:

  1. Voropay ES, Gulis IM, Kupreev AG, at al. The dispersion hyperspectrometer with reconfigurable input aperture on the basis of the micro-mirror matrix [in Russian]. Herald BSU 2009; 1(3): 31-5.
  2. Tack N, Lambrechts A, Soussan S,  Haspeslagh L. A compact, high-speed, and low-cost hyperspectral imager. Proceeding of SPIE 2012; 8266: 82660Q1-13. DOI:10.1117/12.908172.
  3. Geelen B, Tack N,   Lambrechts A. A snapshot multispectral imager with integrated, tiled filters and optical duplication. Proceeding of SPIE 2013; 8613: 861314-1-13. DOI:10.1117/12.2004072.
  4. Source: <http://www.specim.fi/files/pdf/core/data­sheets/PFD%20Spec­tral%20Camera-v3-11.pdf>.
  5. Gat N. Imaging Spectroscopy Using Tunable Filters: A Review. Proceeding of SPIE 2000; 4056: 50-64.
  6. Correia JH, Bartek M, Wolffenbuttel RF.  High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum. IEEE Transactions on Electron Devices 2000; 47(3): 553-9.
  7. Jayapala M, Lambrechts A, Tack N, Geelen B, Masschelein B.  Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging. Source: <http://www.imagesensors.org/ Past%20Workshops/2013%20Workshop/2013%20Papers/07-02_053-jayapala.pdf>.
  8. Kazanskiy NL, Kharitonov SI, Khonina SN, Volotovskiy SG, Strelkov YuS. Simulation of  hyperspectrometer on spectral linear variable filters. Computer Optics 2014; 38(2): 256-70.
  9. Skidanov RV, Blank VA, Morozov AA. Study of an imaging spectrometer based on a diffraction lens. Computer Optics 2015; 39(2): 218-23.
  10. Nansen C, Zhao G, Dakin N, Zhao C, Turner SR. Using hyperspectral imaging to determine germination of native Australian plant seeds. J. Photochem. & Photobio. B. 2015; 145(19): 15173-80.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20