Consecutive gender and age classification from  facial images based on ranked local binary patterns
A.V. Rybintsev, V.S. Konushin, A.S. Konushin

 

M.V. Lomonosov Moscow State University, Moscow, Russia,
Video Analysis Technologies LLC, Moscow, Russia,

Higher School of Economics, Moscow, Russia

Full text of article: Russian language.

 PDF

Abstract:
A new algorithm for consecutive classification of gender and age based on a two-stage support vector regression is proposed. Only most significant local binary patterns are used to describe the image. To enhance the gender classification accuracy we use bootstrapping with the training based on difficult examples, whereas the age classification is improved through the use of floating age ranges.

Keywords:
machine learning, image classification, gender classification, age classification, local binary patterns, Adaboost, support vector machine, bootstrapping, support vector regression.

Citation:
Rybintsev AV, Konushin VS, Konushin AS. Consecutive gender and age classification from facial images based on ranked local binary patterns. Computer Optics 2015; 39(5): 762-9. – DOI: 10.18287/0134-2452-2015-39-5-762-769.

References:

  1. Fu Y, Xu Y, Huang T. Estimating human ages by manifold analysis of face pictures and regression on aging features. Proceedings of the 2007 IEEE Multimedia Expo Conference; 2007: 1383-6.
  2. Montillo A, Ling H. Age regression from faces using random forests. Proceedings of the 2009 IEEE International Conference on Image Processing; 2009: 2465-8.
  3. Cootes T, Edwards G, Taylor C. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001; 23(6): 681-5.
  4. Lian HC, Lu BL. Multi-view gender classification using local binary patterns and support vector machines. ISNN’06. Proceedings of the 3rd Internatinal Symposium on Neural Networks 2006; 2: 202-9.
  5. Guo G, Mu G, Fu Y. Human age estimation using bio-inspired features. Proceedings of the 2009 IEEE International Conference on Computer Vision and Pattern Recognition; 2009: 112-9.
  6. Guo G, Mu G, Fu Y, Dyer C, Huang T. A study on automatic age estimation using a large database. Proceedings of the 2009 IEEE International Conference on Computer Vision; 2009: 1986-91.
  7. Shan C. Learning local binary patterns for gender classification on real-world face images. Pattern Recognition Letters 2012; 33(4): 431-7.
  8. Kuharenko A, Konushin A. Simultaneous facial attribute classification with convolutional neural. PRIA-11-2013. Proceedings of the 2013 IEEE International Conference on Pattern Recognition and Image Analysis; 2013: 623-6.
  9. Konushin VS, Lukina TM, Kuharenko AI, Konushin AS. Person classification upon face image based on simile classifiers [In Russian]. Systems and Mean of Information 2013; 23(2): 34-45.
  10. Chang KY, Chen CS, Hung YP. A ranking approach for human age estimation based on face images. ICPR-20-2010. Proceedings of the 20th IEEE International Conference on Pattern Recognition; 2010: 3396-9.
  11. Chang KY, Chen CS, Hung YP. Ordinal hyperplanes ranker with cost sensitivities for age estimation. Proceedings of the 2011 IEEE International Conference on Computer Vision and Pattern Recognition; 2011: 585-92.
  12. Guo G, Fu Y, Huang T, Dyer C. A probabilistic fusion approach to human age prediction. CVPRW’08. Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops; 2008: 1-6.
  13. Yilionias J, Hadid A, Hong X, Pietikainen M. Age estimation using local binary patterns kernel density estimate. ICIAP’13. Proceedings of the 2013 IEEE International Conference on Image Analysis and Processing; 2013: 141-50.
  14. Luu K, Ricanek K, Bui T, Suen C. Age estimation using active appearance model and support vector machine regression. BTAS’09. Proceedings of the 3rd IEEE International conference on biometrics: theory, applications and systems; 2009: 1-5.
  15. Rybintsev AV, Lukina TM, Konushin VS, Konushin AS. Age estimation upon face image based on local binary patterns and a ranking approach [In Russian]. Systems and Mean of Information 2013; 23(2): 48-59.
  16. Chen K, Gong S, Xiang T. Cumulative attribute space for age and crowd density estimation. Proceedings of the 2013 IEEE International Conference on Computer Vision and Pattern Recognition; 2013: 2467-74.
  17. Moghaddam B, Yang M. Learning gender with support faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002; 24(5): 707-11.
  18. BenAbdelkader C, Griffin P. A local region-based approach to gender classification from face images. CVPRW’05. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops; 2005: 52-6.
  19. Makinen E, Raisamo R. Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 2008; 30(3): 541-8.
  20. Hadid A, Pietikainen M. Combining appearance and motion for face and gender recognition from videos. Pattern Recognition 2009; 42(11): 2818–27.
  21. Shakhnarovich G, Viola P, Moghaddam B. A unified learning framework for real time face detection and classification. Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition; 2002: 14-21.
  22. Lapedriza A, Marin-Jimenez M, Vitria J. Gender recognition in non controlled environments. ICPR 2006. Proceedings of the 18th IEEE International Conference on Patter Recognition 2006; 3: 834-7.
  23. Baluja S, Rowlay H. Boosting sex identification performance. Computer Vision 2007; 71(1): 11–9.
  24. Gao W, Ai H. Face gender classification on consumer images in a multiethnic environment. ICB 2009. Proceedings of the 3d IEEE International Conference Advances in Biometrics; 2009: 169-78.
  25. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002; 24(7): 971-87.
  26. Schapire, R. Short Introduction to Boosting. IJCAI’99. Proceedings of the 16th International Joint Conference on Artificial Intelligence1999; 2: 1401-6.
  27. Felzenszwalb P, Gurchik R, McAllester D, Ramanan D. Object detection with discriminatively trained part base models. IEEE Transactions on Pattern Analysis and Machine Intelligence 2010; 32(9): 1627-45.
  28. Laptev I. Improvements of object detection using boosted histograms. Image and Vision Computing 2009; 27(5): 535-44.
  29. Chang C, Lin C. LIBSVM: a library for support vector machine. Source: http://csiewiki.org/cjlin/libsvm/ .
  30. MORPH (Craniofacial Longitudinal Morphological Face Database). Source: http://www.faceaging-group.com/morph/ .
  31. The FG-NET aging Database. Source: http://www.fgnet.rsunit.com .
  32. Labeled Faces in the Wild dataset. Source: http://www.cs.umass.edu/lfw/ .

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20