Spectral features of spontaneous four-wave mixing in tapered nanofibers
A.A. Shukhin, A.A. Kalachev

 

E. K. Zavoisky Kazan Physical-Technical Institute (KPhTI)

of Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia,
Kazan Federal University, Kazan, Russia

Full text of article: Russian language.

 PDF

Abstract:
Features of biphoton states generated via spontaneous four-wave mixing in tapered nanofibers are studied. The spectral amplitude of a biphoton field is calculated and the effect of interference of the biphoton field in such structures is discussed. The effect of nanofiber environment on the spectral amplitude of the biphoton field is investigated.

Keywords:
spontaneous four-wave mixing, correlated photons, IR spectroscopy.

Citation:
Shukhin AA, Kalachev AA Spectral features of spontaneous four-wave mixing in tapered nanofibers. Computer Optics 2016; 40(2): 141-6. DOI: 10.18287/2412-6179-2016-40-2-141-146.

References:

  1. O’Brien JL, Furusawa A, Vuckovic J. Photonic quantum technologies. Nature Photonics 2009; 3: 687-695.
  2. Eisaman MD, Fan J, Migdall A, Polyakov SV. Invited Review Article: Single-photon sources and detectors. Rev Sci Instrum 2011; 82(7): 071101. DOI: 10.1063/1.3610677.
  3. Brambilla G. Optical fibre nanowires and microwires: a review. J Opt 2010; 12(4): 043001. DOI: http://dx.doi.org/10.1088/2040-8978/12/4/043001.
  4. Tong L, Zi F, Guo X, Lou J. Optical microfibers and nanofibers: A tutorial. Optics Communications 2012; 285: 4641-4647. DOI: 10.1016/j.optcom.2012.07.068.
  5. Morrissey MJ, Deasy K, Frawley M, Kumar R, Prel E, Russell L, Chormaic N. Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: A review. Sensors 2013; 13(8): 10449-10481. DOI: 10.3390/s130810449.
  6. Balikin VI. Quantum control of atoms and photons by optical nanofibers. Physics-Uspekhi 2014; 57: 607-615. DOI: 10.3367/UFNr.0184.201406h.0656.
  7. Richard S. Second-harmonic generation in tapered optical fibers. JOSA B 2010; 27(8): 1504-1512. DOI: 10.1364/JOSAB.27.001504.
  8. Coillet A, Grelu P. Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects. Optics Communications 2012; 285: 3493-3497. DOI: 10.1016/j.optcom.2012.04.020.
  9. Corona M, Garay-Palmett K, U’Ren AB. Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source. Physical Review A 2011; 84: 033823. DOI: http://dx.doi.org/10.1103/PhysRevA.84.033823.
  10. Corona M, Garay-Palmett K, U’Ren AB. Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric down-conversion in optical fibers. Opt Lett 2011; 36(2): 190-192. DOI: 10.1364/OL.36.000190.
  11. Cui L, Li X, Guo C, Li YH, Xu ZY, Wang LJ, Fang W. Generation of correlated photon pairs in micro/nanofibers. Optics letters 2013; 38: 5063-5066. DOI: 10.1364/OL.38.005063.
  12. Meyer-Scott E, Dot A, Ahmad R, Li L, Rochette M, Jennewein T. Power-efficient production of photon pairs in a tapered chalcogenide microwire. Applied Physics Letters 2015; 106: 081111. DOI: http://dx.doi.org/10.1063/1.4913743.
  13. Katsenelenbaum BZ. The theory of irregular waveguides with slowly varying parameters [In Russian]. Moscow: USSR Academy of Sciences Publisher; 1961.
  14. Gisin N, Thew R. Quantum communication. Nature photonics 2007; 1: 165. DOI: 10.1038/nphoton.2007.22.
  15. Kalashnikov D, Paterova AV, Kulik SP, Krivitsky LA. A. Infrared spectroscopy with visible light. Nature Photonics 2016; 10: 98-101. DOI: 10.1038/nphoton.2015.252.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20