Optical trapping and moving of microparticles using asymmetrical Bessel-Gaussian beams
A.P. Porfirev, A.A. Kovalev, V.V. Kotlyar

 

Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia,

Samara State Aerospace University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
We study the optical trapping, rotating and moving of 5-mm polystyrene microspheres in asymmetrical crescent-shaped Bessel-Gaussian laser beams that carry the orbital angular momentum. The beams are generated by a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. It is shown experimentally that while the topological charge of the beam remains unchanged, an increasing asymmetry of the beam causes a near-linear increase in the microparticles velocity. This serves to confirm that the orbital angular momentum (OAM) of the beam depends in a linear manner on the beam's asymmetry. The use of crescent-shaped beams can reduce the thermal exposure of biological objects during optical micromanipulation.

Keywords:
optical trapping, spatial light modulators, laser beam shaping, asymmetrical Bessel-Gaussian beam, orbital angular momentum.

Citation:
Porfirev AP, Kovalev AA, Kotlyar VV. Optical trapping and moving of microparticles using asymmetrical Bessel-Gaussian beams. Computer Optics 2016; 40(2): 152-7. DOI: 10.18287/2412-6179-2016-40-2-152-157.

References:

  1. Kotlyar VV, Kovalev AA, Soifer VA. Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum. Computer Optics 2014; 38(1): 4-10.
  2. Kotlyar VV, Kovalev AA, Soifer VA. Asymmetric Bessel modes. Optics Letters 2014; 39(8): 2395-2398.
  3. Kotlyar VV, Kovalev AA, Skidanov RV, Soifer VA. Rotating elegant Bessel-Gaussian beams. Computer Optics 2014; 38(2): 162-170.
  4. Kotlyar VV, Kovalev AA, Skidanov RV, Soifer VA. Assymetric Bessel-Gauss beams. Journal of the Optical Society of America A 2014; 31(9): 1977-1983.
  5. Gong L, Qiu XZ, Ren YX, Zhu HQ, Liu WW, Zhou JH, Zhong MC, Chu XX, Li YM. Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device. Optics Express 2014; 22(22): 26763-26776.
  6. Sheppard CJR, Kou SS, Lin J. Two-dimensional complex source point solutions: application to propagationlly invarint beams,optical fiber modes, planar waveguides, and plasmonic devices. Journal of the Optical Society of America A 2014; 31(12): 2674-2679.
  7. Bouchal Z, Olivik M. Non-diffractive vector Bessel beams. Journal of Modern Optics 1995; 42(8): 1555-1566.
  8. Yu YZ, Dou WB. Vector analysis of nondiffracting Bessel beams. Progress In Electromagnetics Research Letters 2008; 5: 57-71.
  9. Schafer FP. On some properties of axicons. Applied Physics B 1986; 39: 1-8.
  10. Rykov MA, Skidanov RV. Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap. Applied Optics 2014; 53(2): 156-164.
  11. Kotlyar VV, Stafeev SS, Porfirev AP. Tight focusing of an asymmetric Bessel beam. Optics Communications 2015; 357: 45-51.
  12. Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Optics Communications 1987; 64: 491-495.
  13. Goorden SA, Bertolotti J, Mosk AP. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Optics Express 2014; 22: 17999-18009.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20