Generating a perfect optical vortex: comparison of approaches
A.A. Kovalev
, V.V. Kotlyar, A.P. Porfirev

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
We derived exact analytical relationships to describe the complex amplitude of a perfect optical vortex generated by means of three different optical elements, namely, (i) an amplitude-phase element with the transmission function proportional to a Bessel function, (ii) an optimal phase element with transmission equal to the sign function of a Bessel function, and (iii) a vortex axicon. The doughnut intensity was shown to be highest when using an optimal phase element. The vortex-axicon-aided intensity ring was found to be about twice as wide as when generated using two other elements under analysis. Thus, the optimal filter was shown to be best suited for generating a perfect optical vortex. Simulation results were shown to corroborate theoretical predictions, with the experiment being in agreement with theory and simulation.

Keywords:
perfect optical vortex, topological charge, radius and width of an intensity ring, Bessel mode, vortex axicon.

Citation:
Kotlyar VV, Kovalev AA, Porfirev AP. Generating a perfect optical vortex: comparison of approaches. Computer Optics 2016; 40(3): 312-321. DOI: 10.18287/2412-6179-2016-40-3-312-321.

References:

  1. Huang S, Miao Z, He C, PangF, Li Y, Wang T. Composite vortex beams by coaxial superposition of Laguerre-Gaussian beams. Opt Las Eng 2016; 78: 132-139.
  2. Plick WN, Krenn M. Physical meaning of the radial index of Laguerre-Gauss beams. Phys Rev A 2015; 92(6): 063841.
  3. Savelyev SA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Computer Optics 2015; 39(5): 654-662. DOI: 10.18287/0134-2452-2015-39-5-654-662.
  4. Stilgoe AB, Nieminen TA, Rubinsztein-Dunlop H. Energy, momentum and propagation of non-paraxial high-order Gaussian beams in the presence of an aperture. J Opt 2015; 17(12): 125601. DOI:10.1088/2040-8978/17/12/125601.
  5. Zhang Y, Liu X, Belic M, Zhong W, Wen F, Zhang Y. Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential. Opt Lett 2015; 40: 3786-3789.
  6. Kim DJ, Kim JW. High-power TEM00 and Laguerre–Gaussian mode generation in double resonator configuration. Appl Phys B 2015; 121(3): 401-405.
  7. Das BC, Bhattacharyya D, De S. Narrowing of Doppler and hyperfine line shapes of Rb - D2 transition using a vortex beam. Chem Phys Lett 2016; 644: 212-218.
  8. Allocca A, Gatto A, Tacca M, Day RA, Barsuglia M, Pillant G, Buy C, Vajente G. Higher-order Laguerre-Gauss interferometry for gravitational-wave detectors with in situ mirror defects compensation. Phys Rev D 2015; 92(10): 102002.
  9. Sun K, Qu C, Zhang C. Spin-orbital-angular-momentum coupling in Bose-Einstein condensates. Phys Rev A 2015; 91(6): 063627.
  10. Redding B, Pan Y. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam. Opt Lett 2015; 40(12): 2798-2801.
  11. Thanopulos I, Luckhaus D, Preston TC, Signorell R. Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams. J Appl Phys 2014; 115(15): 154304.
  12. Carrat V, Cabrera-Gutiérrez C, Jacquey M, Tabosa J, Viaris de Lesegno B, Pruvost L. Long-distance channeling of cold atoms exiting a 2D magneto-optical trap by a Laguerre-Gaussian laser beam. Opt Lett 2014; 39(3): 719-722.
  13. Kotlyar VV, Kovalev AA, Skidanov RV, Soifer VA. Asymmetric Bessel–Gauss beams. J Opt Soc Am A 2014; 31: 1977-1983.
  14. Kotlyar VV, Kovalev AA, Soifer VA. Asymmetric Bessel modes. Opt Lett 2014; 39(8): 2395-2398.
  15. Porfirev AP, Kovalev AA, Kotlyar VV. Optical trapping and moving of microparticles by using the asymmetrical Bessel-Gaussian beams. Computer Optics 2016; 40(2): 152-157. DOI: 10.18287/2412-6179-2016-40-2-152-157.
  16. Kovalev AA, Kotlyar VV, Zaskanov SG, Kalinkina DS. Laguerre-Gaussian beams with complex shift in cartesian coordinates [In Russian]. Computer Optics 2016; 40(1): 5-11.
  17. Rykov MA, Skidanov RV. Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap. Appl Opt 2014; 53: 156-164.
  18. Kim HC, Lee YH. Hermite–Gaussian and Laguerre–Gaussian beams beyond the paraxial approximation. Opt Commun 1999; 169: 9-16
  19. Ostrovsky AS, Rickenstorff-Parrao C, Arrizon V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. Opt Lett 2013; 38(4): 534-536.
  20. Chen M, Mazilu M, Arita Y, Wright EM, Dholakia K. Dynamics of microparticles trapped in a perfect vortex beam. Opt Lett 2013; 38(22): 4919-4922.
  21. Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt Lett 2015; 40: 597-600.
  22. Jabir MV, Apurv Chaitanya N, Aadhi A, Samanta GK. Generation of "perfect" vortex of variable size and its effect in angular spectrum of the down-converted photons. Scientific Reports 2016; 6: 21877.
  23. García-García J, Rickenstorff-Parrao C, Ramos-García R, Arrizón V, Ostrovsky A. Simple technique for generating the perfect optical vortex. Opt Lett 2014; 39(18): 5305-5308.
  24. Fedotowsky A, Lehovec K. Optimal filter design for annular imaging. Appl Opt 1974; 13(12): 2919-2923.
  25. Korn GA, Korn TM. Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill Book Co., 1961.
  26. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series, Special Functions. New York: Gordon and Breach; 1981.
  27. Kotlyar VV, Khonina SN, Kovalev AA, Soifer VA, Elfstrom H, Turunen J. Diffraction of a plane, finite-radius wave by a spiral phase plate. Opt Lett 2006; 31(11): 1597-1599.
  28. Kotlyar VV, Kovalev AA, Skidanov RV, Moiseev OYu, Soifer VA. Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate. J Opt Soc Am A 2007; 24(7): 1955-1964.
  29. Kotlyar VV, Kovalev AA, Soifer VA, Tuvey CS, Davis JA. Sidelobe contrast reduction for optical vortex beams using a helical axicon. Opt Lett 2007; 32(8): 921-923.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20