Estimation of parameters of a linear spectral mixture for hyperspectral images with atmospheric distortions
A.Y. Denisova, Y.N. Juravel, V.V. Myasnikov

 

Samara National Research University, Samara, Russia
Image Processing Systems Institute оf RAS,– Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
In this paper, we propose a novel method for estimating parameters of a linear spectral mixture for hyperspectral images. This method allows omitting a preliminary atmospheric correction of the input image.  In order to derive a solution of the mixture problem different models of radiation transmission in atmosphere are considered. An evaluation of the effects of noise, the number of input pixels, and the number of signatures on the accuracy of the linear mixture coefficient restoration and the input pixel representation error is made.

Keywords:
hyperspectral images, linear spectral mixture analysis, atmospheric correction.

Citation:
Denisova AY, Juravel YN, Myasnikov VV. Estimation of parameters of a linear spectral mixture for hyperspectral images with atmospheric distortions. Computer Optics 2016; 40(3): 380-387. DOI: 10.18287/2412-6179-2016-40-3-380-387.

References:

  1. Kirilin AN, Baklanov AI, Akhmetov RN, Fedorov VM, Stratilatov NR, Novikov MV. Spacecraft “Resurs-P” [in Russian]. Geomatika 2010; 4(9): 23-26.
  2. Matthew MV, Adler-Golden SM, Berk A, Felde G, Anderson GP, Gorodetzky D, Paswaters S, Shippert M. Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data. Applied Imagery Pattern Recognition Workshop, AIPR ’02, 31st 2002: 157-163. DOI: 10.1109/AIPR.2002.1182270.
  3. Kruse FA. Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, CO. Summaries of 13th JPL Airborne Geoscience Workshop, Jet Propulsion Lab. Pasadena, CA: 2004.
  4. Belov AM, Myasnikov VV. Atmospheric correction of hyperspectral images based on approximate solution of transmittance equation. 7th International Conference on Machine Vision (ICMV 2014) 2015: 94450S. DOI: 10.1117/12.2181364.
  5. Chang CI: Hyperspectral Data Processing: Algorithm Design and Analysis. John Wiley & Sons; 2013.
  6. Keshara NA. Survey of Spectral Unmixing Algorithms. Lincoln Laboratory Journal 2003; 14(1): 55-78.
  7. Denisova A, Myasnikov V. Fully constrained linear spectral unmixing algorithm for hyperspectral image analys. Computer Optics 2014; 38(4): 782-789.
  8. Yuanliu X, Runsheng W, Shengwei L, Suming Y, Bokun Y. Atmospheric correction of hyperspectral data using MODTRAN model. Proceedings of SPIE, the International Society for Optical Engineering 2003; 7123: 712306. DOI: 10.1117/12.815552.
  9. Minoux M. Mathematical programming: theory and algorithms. John Wiley & Sons, Inc.; 1986.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20