Electro-optical correction of Bessel beam conversion along the axis of a barium niobate-strontium crystal
S.N. Khonina, V.D. Paranin
Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia
Full text of article: Russian language.
PDF
Abstract:
We perform a theoretical study of the electrically controlled transformation of Bessel beams propagating along the optical axis of an electro-optical barium niobate-strontium crystal. Computer modeling has shown the ability of the anisotropic crystal to dynamically change the output intensity distribution of the beam due to a change in the refractive index as a result of the applied voltage. On the basis of theoretical analysis and numerical simulation we specify the control voltage required to correct the conversion of the zero-order Bessel beam generated by a diffractive axicon into a second-order vortex Bessel beam.
Keywords:
Bessel beams, anisotropic crystal, vortex beam, electro-optical controlling, crystal of barium niobate-strontium.
Citation:
Khonina SN, Paranin VD. Electro-optical correction of Bessel beam conversion along axis of a barium niobate-strontium crystal. Computer Optics 2016, 40(4): 475-481. DOI: 10.18287/2412-6179-2016-40-4-475-481.
References:
- Ye Q, Qiao L, Cai H, Qu R. High-efficiency electrically tunable diffraction grating based on a transparent lead magnesium niobate-lead titanite electro-optic ceramic. Optics Letters 2011; 36(13): 2453-2455. DOI: 10.1364/OL.36.002453.
- Paranin VD. Methods to control parameters of a diffraction grating on the surface of lithium niobate electro-optical crystal. Technical Physics 2014; 59(11): 1723-1727. DOI: 10.1134/S1063784214110206.
- Soifer VA, ed. Computer Design of Diffractive Optics. Oxford, Cambridge, Philadelphia, New Delhi: Woodhead Publishing; 2012. ISBN: 978-1-84569-635-1.
- Zhu W, She W. Electro-optically generating and controlling right- and left-handed circularly polarized multiring modes of light beams. Optics Letters 2012; 37(14): 2823-2825. DOI: 10.1364/OL.37.002823.
- Zhu W, She W. Electrically controlling spin and orbital angular momentum of a focused light beam in a uniaxial crystal. Optics Express 2012; 20(23): 25876-25883. DOI: 10.1364/OE.20.025876.
- Cagniot E, Fromager M, Godin T, Passilly N, Aït-Ameur K. Transverse superresolution technique involving rectified Laguerre-Gaussian LG(p)0 beams. J Opt Soc Am A 2011; 28(8): 1709-1715. DOI: 10.1364/JOSAA.28.001709.
- Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics 2011; 3(2): 161-204. DOI: 10.1364/AOP.3.000161.
- Soifer VA, Kotlyar VV, Khonina SN. Optical Microparticle Manipulation: Advances and New Possibilities Created by Diffractive Optics. Physics of Particles and Nuclei 2004; 35(6): 733-766.
- Matsuoka Y, Kizuka Y, Inoue T. The characteristics of laser micro drilling using a Bessel beam. Applied Physics A 2006; 84(4): 423-430. DOI: 10.1007/s00339-006-3629-6.
- Alferov SV, Karpeev SV, Khonina SN, Tukmakov KN, Moiseev OYu, Shulyapov SA, Ivanov KA, Savel'ev-Trofimov AB. On the possibility of controlling laser ablation by tightly focused femtosecond radiation. Quantum Electronics 2014; 44(11): 1061-1065. DOI: 10.1070/QE2014v044n11ABEH015471.
- Paranin VD, Karpeev SV, Khonina SN. Transformation of Bessel beams in c-cuts of uniaxial crystals by varying the emission source wavelength. Journal of Russian Laser Research 2016; 37(3): 250-253. DOI: 10.1007/s10946-016-9567-7.
- Paranin VD, Khonina SN, Karpeev SV. Control of the optical properties of a CaCO3 crystal in problems of generating Bessel vortex beams by heating. Optoelectronics, Instrumentation and Data Processing 2016; 52(2): 174-179. DOI: 10.3103/S8756699016020102.
- Paranin VD, Karpeev SV, Khonina SN. Control of the formation of vortex Bessel beams in uniaxial crystals by varying the beam divergence. Quantum Electronics 2016; 46(2): 163-168. DOI: 10.1070/QEL15880.
- Khonina SN, Volotovsky SG, Kharitonov SI. Features of nonparaxial propagation of Gaussian and Bessel beams along the axis of the crystal. Computer Optics 2013; 37(3): 297-306.
- Khonina SN, Kharitonov SI. Comparative investigation of nonparaxial mode propagation along the axis of uniaxial crystal. Journal of Modern Optics 2015; 62(2): 125-134. DOI: 10.1080/09500340.2014.959085.
- Khonina SN, Karpeev SV, Morozov AA, Paranin VD. Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements. J Mod Opt 2016; 63(13): 1239-1247. DOI: 10.1080/09500340.2015.1137368.
- Vasara A, Turunen J, Friberg AT. Realization of general nondiffracting beams with computer-generated holograms. J Opt Soc Am A 1989; 6: 1748-1754. DOI: 10.1364/JOSAA.6.001748.
- Khonina SN, Morozov AA, Karpeev SV. Effective transformation of a zero-order Bessel beam into a second-order vortex beam using a uniaxial crystal. Laser Physics 2014; 24(5): 056101. DOI: 10.1088/1054-660X/24/5/056101.
- Cherkashin VV, Kharissov AA, Korol'kov VP, Koronkevich VP, Poleshchuk AG. Accuracy potential of circular laser writing of DOEs. Proceedings of SPIE 1997, 3348: 58-68
- Ustinov AV, Khonina SN. Analysis of laser beam diffraction by axicon with the numerical aperture above limiting. Computer Optics 2014; 38(2): 213-222.
- Agafonov AN, Moiseev OY, Korlyukov AA. Analysis of dependence of local thermochemical oxidation technology resolution from photosensitive chrome film structure parameters. Computer Optics 2010; 34(1): 101-108.
- Yariv A, Yeh P. Optical Waves in Crystals: Propagation and Control of Laser Radiation. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons; 1983. ISBN: 978-0471091424.
- Kuz’minov YuS. Ferroelectric crystals for laser control [in Russian]. Moscow: “Nauka” Publisher; 1982.
- Volk TR, Isakov DV, Ivleva LI. Polarization of strontium-barium niobate crystals in pulsed fields. Physics of the Solid State 2003; 45(8): 1537-1542. DOI: 10.1134/1.1602893.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20