Defocus and numerical focusing in interference  microscopy with wide  time-varying spectrum of illumination field
A.A. Grebenyuk, V.P. Ryabukho
   
  Institute of Precision Mechanics and Control of the  Russian Academy of Sciences, Saratov, Russia,
Saratov State University, Saratov, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
This paper presents an  analysis of the influence of illumination with wide temporal spectrum on the  properties of a defocused interference signal and numerically focused imaging  in interference microscopy. It is shown that the differences in defocus  influence on different spectral components of a signal with wide temporal  spectrum may lead to degradation of the images of defocused sample parts, in  spite of the use of numerical focusing. The magnitude of these effects depends  on the temporal spectrum width, the numerical aperture of the imaging system  and the amount of defocus. The influence of these effects on the properties of  numerically focused imaging in Fourier domain optical coherence  tomography/microscopy is considered. 
Keywords:
interference microscopy,  optical coherence tomography, image reconstruction techniques, numerical  focusing.
Citation:
Grebenyuk AA, Ryabukho  VP. Defocus and numerical focusing in interference microscopy with wide temporal  spectrum of illumination field. Computer Optics 2016; 40(6): 772-780. DOI:  10.18287/2412-6179-2016-40-6-772-780.
References:
  - Cuche E, Marquet P,  Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast  microscopy by numerical reconstruction of Fresnel off-axis holograms. Applied  Optics 1999; 38(34): 6994-7001. DOI: 10.1364/AO.38.006994. 
- Mann CJ, Yu L, Lo C-M, Kim MK. High-resolution  quantitative phase-contrast microscopy by digital holography. Optics Express  2005; 13(22): 8693-8698. DOI: 10.1364/OPEX.13.008693. 
- Dubois F, Requena M-LN, Minetti C, Monnom O, Istasse  E. Partial spatial coherence effects in digital holographic microscopy with a  laser source. Applied Optics 2004; 43(5): 1131-1139. DOI: 10.1364/AO.43.001131. 
- Kemper B, von Bally G.  Digital holographic microscopy for live cell applications and technical  inspection. Applied Optics 2008; 47(4): A52-A61.  DOI: 10.1364/AO.47.000A52. 
- Massatsch P, Charrière F, Cuche E, Marquet P, Depeursinge  CD. Time-domain optical coherence tomography with digital holographic  microscopy. Applied Optics 2005; 44(10): 1806-1812. DOI: 10.1364/AO.44.001806. 
- Min G, Kim JW, Choi WJ, Lee BH. Numerical correction  of distorted images in full-field optical coherence tomography. Measurement  Science and Technology 2012; 23(3): 035403. DOI: 10.1088/0957-0233/23/3/035403. 
- Yu LF, Kim MK. Wavelength-scanning digital interference  holography for tomographic three-dimensional imaging by use of the angular  spectrum method. Optics Letters 2005; 30(16): 2092-2094. DOI: 10.1364/OL.30.002092. 
- Ralston TS, Marks DL, Carney PS, Boppart SA. Interferometric  synthetic aperture microscopy. Nature Physics 2007; 3: 129-134. DOI: 10.1038/nphys514. 
- Marks DL, Ralston TS,  Boppart SA, Carney PS. Inverse scattering for frequency-scanned full-field  optical coherence tomography. JOSA A 2007; 24(4): 1034-1041. DOI:  10.1364/JOSAA.24.001034. 
- Hillmann D, Lührs C, Bonin  T, Koch P, Hüttmann G. Holoscopy-holographic optical coherence tomography.  Optics Letters 2011; 36(13): 2390-2392. DOI:  10.1364/OL.36.002390. 
- Shabanov DV, Geliknov GV, Gelikonov VM. Broadband digital holographic  technique of optical coherence tomography for 3-dimensional biotissue  visualization. Laser Physics Letters 2009; 6(10): 753-758. DOI:  10.1002/lapl.200910052.
- Kumar A, Drexler  W, Leitgeb RA. Subaperture correlation based digital adaptive  optics for full field optical coherence tomography. Optics Express 2013; 21(9):  10850-10866. DOI: 10.1364/OE.21.010850. 
- Kumar A, Drexler W, Leitgeb RA.  Numerical focusing methods for full field OCT: a  comparison based on a common signal model. Optics Express 2014; 22(13):  16061-16078. DOI: 10.1364/OE.22.016061. 
- Grebenyuk  AA, Ryabukho VP. Numerical correction of coherence gate in full-field  swept-source interference microscopy. Optics Letters 2012; 37(13): 2529-2531. DOI: 10.1364/OL.37.002529. 
- Grebenyuk  AA, Ryabukho VP. Numerical reconstruction of 3D image in Fourier domain  confocal optical coherence microscopy. Proceedings of the International  Conference on Advanced Laser Technologies 2012. Bern Open Publishing 2013. DOI: 10.12684/alt.1.60. 
- Grebenyuk A, Federici A,  Ryabukho V, Dubois A. Numerically focused full-field swept-source optical  coherence microscopy with low spatial coherence illumination. Applied Optics  2014; 53(8): 1697-1708. DOI: 10.1364/AO.53.001697. 
- Talaikova NA, Grebenyuk AA,  Kalyanov AL, Ryabukho VP. Numerical focusing in diffraction phase microscopy.  Proc. SPIE 2016; 9917: 99171V. DOI: 10.1117/12.2229881. 
- Dubois A,  Moneron G, Boccara C. Thermal-light full-field optical coherence tomography in  the 1.2 µm wavelength region. Optics Communications 2006; 266(2): 738-743. DOI: 10.1016/j.optcom.2006.05.016. 
- Federici A, Dubois A.  Full-field optical coherence microscopy with optimized ultrahigh spatial  resolution. Optics Letters 2015; 40(22): 5347-5350. DOI:  10.1364/OL.40.005347. 
- Pham HV,  Edwards C, Goddard LL, Popescu G. Fast phase reconstruction in white light  diffraction phase microscopy. Applied Optics 2013; 52(1): A97-A101. DOI: 10.1364/AO.52.000A97. 
- Edwards C,  Bhaduri B, Nguyen T, Griffin BG, Pham H, Kim T, Popescu G, Goddard LL. Effects  of spatial coherence in diffraction phase microscopy. Optics Express 2014;  22(5): 5133-5146. DOI: 10.1364/OE.22.005133. 
- Grebenyuk  AA, Ryabukho VP. Theoretical model of volumetric objects imaging in a  microscope. Proc SPIE 2012; 8430: 84301B. DOI: 10.1117/12.922198. 
- Grebenyuk  AA, Ryabukho VP. Coherence effects of thick objects imaging in interference  microscopy. Proc SPIE 2012; 8427: 84271M. DOI: 10.1117/12.922108. 
- Grebenyuk  AA, Ryabukho VP. Theory of imaging and coherence effects in full-field optical  coherence microscopy. in: Dubois A, ed. Handbook of full-field optical  coherence microscopy. Singapore: Pan Stanford Publishing; 2016. Chap 2: 53-89. ISBN: 9789814669160. 
-   Grebenyuk AA, Ryabukho  VP. Numerical focusing in digital holographic microscopy with partially  spatially coherent illumination in transmission. Proc SPIE 2014; 9031: 903119. DOI: 10.1117/12.2052837.
  
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20