Determination of an optical vortex topological charge using an astigmatic transform
V.V. Kotlyar
, A.A. Kovalev, A.P. Porfirev

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
It It is shown both theoretically and experimentally that if a cylindrical lens is placed into a laser beam, having an optical vortex with integer topological charge n and on-axis intensity null, then at the double focal distance behind the lens, the n-fold degenerate intensity null is split into n isolated intensity nulls. These intensity nulls lie on a straight line in the transverse plane at an angle of + 45 or – 45 degrees to the axis of the cylindrical lens, depending on the vortex helicity direction (i.e. sign of the topological charge). Experiments show that such a method can be used to determine higher-order topological charges up to n = 100.

Keywords:
optical vortex, topological charge, cylindrical lens, astigmatic transform.

Citation:
Kotlyar VV, Kovalev AA, Porfirev AP. Determination of an optical vortex topological charge using an astigmatic transform. Computer Optics 2016; 40(6): 781-792. DOI: 10.18287/2412-6179-2016-40-6-781-792.

References:

  1. Zhu K, Zhou G, Li X, Zheng X, Tang H. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere. Opt Express 2008; 16(26): 21315-21320. DOI: 10.1364/OE.16.021315.
  2. Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, Scheidl T, Ursin R, Zeilinger A. Communication with spatially modulated light through turbulent air across Vienna. New Journal of Physics 2014; 16: 113028. DOI: 10.1088/1367-2630/16/11/113028.
  3. Hadzievski L, Maluckov A, Rubenchik AM, Turitsyn S. Stable optical vortices in nonlinear multicore fibers. Light: Science & Applications 2015; 4: e314. DOI: 10.1038/lsa.2015.87.
  4. Foo G, Palacios DM, Swartzlander Jr. GA. Optical vortex coronagraph. Opt Lett 2005; 30(24): 3308-3310. DOI: 10.1364/OL.30.003308.
  5. Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412: 313-316. DOI: 10.1038/35085529.
  6. Otsu T, Ando T, Takiguchi Y, Ohtake Y, Toyoda H, Itoh H. Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam. Scientific Reports 2014; 4: 4579. DOI: 10.1038/srep04579.
  7. Abramochkin EG, Volostnikov VG. Beam transformations and transformed beams. Optics Communication 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  8. Khonina SN, Kotlyar VV, Soifer VA, Jefimovs K, Paakkonen P, Turunen J. Astigmatic Bessel laser beams. J Mod Opt 2004; 51(5): 677-686. DOI: 10.1080/09500340408235545.
  9. Kotlyar VV, Khonina SN, Almazov AA, Soifer VA, Jefimovs K, Turunen J, Elliptic Laguerre-Gaussian beams. J Opt Soc Am A 2006; 23(1): 43-56. DOI: 10.1364/JO­SAA.23.000043.
  10. Bekshaev AY, Soskin MS, Vasnetsov MV. Transformation of higher-order optical vortices upon focusing by a astigmatic lens. Optics Communications 2004; 241(4-6): 237-247. DOI: 10.1016/j.optcom.2004.07.023.
  11. Almazov AA, Khonina SN, Kotlyar VV. How the tilt of a phase diffraction optical element affects the properties of shaped laser beams matched with a basis of angular harmonics. J Opt Techn 2006; 73(9): 633-639. DOI: 10.1364/JOT.73.000633.
  12. Kotlyar VV, Khonina SN, Soifer VA. Light field decomposition in angular harmonics by means of diffractive optics. J Mod Opt 1998; 45(7): 1495-506. DOI: 10.1080/09500349808230644.
  13. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Turunen J. Measuring the light field orbital angular momentum using DOE. Optical Memory & Neural Networks 2001; 9(4): 241-255.
  14. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Simonen J, Turunen J. An analysis of the angular momentum of a light field in terms of angular harmonics. J Mod Opt 2001; 48(10): 1543-1457. DOI: 10.1080/09500340110047501.
  15. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt 2004; 6(2): 259-268. DOI: 10.1088/1464-4258/6/2/018.
  16. Guo CG, Yue SJ, Wei GX. Measuring the orbital angular momentum of optical vortices using a multipinhole plate. Appl Phys Lett 2009; 94(23): 231104. DOI: 10.1063/1.3151920.
  17. Dai KJ, Gao CQ, Zhong L, Na QX, Wang Q. Measuring OAM states of light beams with gradually-changing-period gratings. Opt Lett 2015; 40(4): 562-565. DOI: 10.1364/OL.40.000562.
  18. Leach J, Padgett M, Barnett S, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Phys Rev Lett 2002; 88(25): 257901. DOI: 10.1103/PhysRevLett.88.257901.
  19. Huang HC, Lin YT, Shih MF. Measuring the fractional orbital angular momentum of a vortex light beam by cascaded Mach-Zehnder interferometers. Optics Communications 2012; 285(4): 383-388. DOI: 10.1016/j.opt­com.2011.09.063.
  20. Zhou J, Zhang WH, Chen LX. Experimental detection of high-order or fractional orbital angular momentum of light based on robust mode converter. Appl Phys Lett 2016; 108(1): 111108. DOI: 10.1063/1.4944463.
  21. Guo C, Lu L, Wang H. Characterizing topological charge of optical vortices by using an annular aperture. Opt Lett 2009; 34(23): 3686-3688. DOI: 10.1364/OL.34.003686.
  22. Hickmann JM, Fonseca EJS, Soares WC, Chavez-Cedra S. Unveiling a truncated optical lattice associated with a triangular aperture using light's orbital angular momentum, Phys Rev Lett 2010; 105(5): 053904. DOI: 10.1103/Phys­RevLett.105.053904.
  23. De Araujo LEE, Anderson ME. Measuring vortex charge with a triangular aperture. Opt Lett 2011; 36(6): 787-789. DOI: 10.1364/OL.36.000787.
  24. Han Y, Zhao G. Measuring the topological charge of optical vortices with an axicon. Opt Lett 2011; 36(11) 2017-2019. DOI: 10.1364/OL.36.002017.
  25. Prabhakar S, Kumar A, Banerji J, Singh RP. Revealing the order of a vortex through its intensity record. Opt Lett 2011; 36(22): 4398-4400. DOI: 10.1364/OL.36.004398.
  26. Vaity P, Singh RP. Topological charge dependent propagation of optical vortices under quadratic phase transformation. Opt Lett 2012; 37(8): 1301-1303. DOI: 10.1364/OL.37.001301.
  27. Vaity P, Banerji J, Singh RP. Measuring the topological charge of an optical vortex by using a tilted convex lens. Phys Lett A 2013; 377(15): 1154-1156. DOI: 10.1016/j.physleta.2013.02.030.
  28. Miyamoto K, Suizu K, Akiba T, Omatsu T. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Appl Phys Lett 2014; 104(26): 261104. DOI: 10.1063/1.4886407.
  29. Serna J, Encinas-Sanz F. Complete spatial characterization of a pulsed doughnut-type beam by use of spherical optica and a cylindrical lens. JOSA 2001; 18(7): 1726-1733. DOI: 10.1364/JOSAA.18.001726.
  30. Peng Y, Gan X, Ju P, Wang Y, Zhao J. Measuring topological charges of optical vortices with multi-singularity using a cylindrical lens. Chin Phys Lett 2015; 32(2): 024201. DOI: 10.1088/0256-307X/32/2/024201.
  31. Kotlyar VV, Khonina SN, Uspleniev GV, Shinkarev MV, Soifer VA. The phase rotor filter. J Mod Opt 1992; 39(5): 1147-1154. DOI: 10.1080/09500349214551151.
  32. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series, Elementary Functions. New York: Gordon and Breach Science Publishers; 1986. ISBN: 9782881240898.
  33. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series, Special Functions. New York: Gordon and Breach Science Publishers; 1986.
  34. Khonina SN. Functional enhancement of mode astigmatic converters on the basis of application of diffractive optical elements. Proceedings of the Samara Scientific Center of the RAS 2009; 11(5): 13-23.
  35. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex Hermite-Gaussian laser beams. Opt Lett 2015; 40(5): 701-704. DOI: 10.1364/OL.40.000701.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20