Influence of the discreteness of synthetic  and digital holograms on their imaging properties
S.N. Koreshev, D.S. Smorodinov, O.V. Nikanorov
   
  St. Petersburg National Research University of  Information Technologies, Mechanics and Optics, St. Petersburg, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
We study in which way the discreteness of synthetic and digital  holograms affects their imaging properties, i.e. the structure and quality of  the image under restoration. We establish and substantiate requirements to the  relationship between the basic parameters of synthesis or recording of a  discrete hologram - operating wavelength, the angle of incidence of the  reference wave, the size of the minimal object feature, and the hologram  sampling period to ensure the matching between the object structures and the  reconstructed image. We also examine the possibility of easing these  requirements, provided either by modifying the structure of the hologram, or  using a frequency substitution effect, characteristic of the discrete  structures.
Keywords:
holography, synthetic  hologram, digital hologram, discrete structure, imaging properties, method of  representation, binarization.
Citation:
Koreshev SN, Smorodinov  DS, Nikanorov OV. Influence  of the discreteness of synthetic and digital holograms on their imaging  properties. Computer Optics 2016; 40(6): 793-801. DOI:  10.18287/2412-6179-2016-40-6-793-801.
References:
  - Koreshev SN, Ratushnyj VP. Using the method of holography to obtain  images of two-dimensional objects when solving problems of high-resolution photolithography. J Opt Techn 2004; 71(10): 673-679. DOI: 10.1364/JOT.71.000673. 
- Lesem LV, Hirsch  PM, Jordan JA Jr. The kinoform: A new wavefront reconstruction  device. IBM Journal of Research and Development 1969; 13(2): 150-155. DOI: 10.1147/rd.132.0150. 
- Collier RJ, Burkhardt ChB, Lin LH.  Optical holography. Bell  Telephone Laboratories; 1971.
- Koreshev  SN, Nikanorov OV, Gromov AD. Method of syntehsizing hologram projectors based  on breaking down the structure of an object into typical elements, and a software  package for implementing it. J Opt Techn 2012; 79(12): 769-774. DOI:  10.1364/JOT.79.000769.
- Koreshev  SN, Nikanorov OV, Smorodinov DS. Imaging properties of discrete holograms. I.  How the discreteness of a hologram affects image recontruction. J Opt Techn  2014; 81(3): 123-127. DOI: 10.1364/JOT.81.000123.
- Landsberg GS.  Optika [In Russian]. Moscow: “Fizmatlit” Publisher; 2003. 
- Koreshev SN, Semyonov GB. The diffraction efficiency and some of the  features of the spectra of discrete holograms [In Russian]. Optics and  Spectroscopy 1976; 41(2): 310-313. 
- Yaroslavsky  LP, Merzlyakov NS. Methods of digital holography [In Russian]. Moscow: “Nauka” Publisher; 1977. 
- Zhang Y, Lu Q, Ge B. Elimination of zero-order diffraction in digital  off-axis holography. Optics communications 2004, 240(4-6), 261-267. DOI: 10.1016/j.optcom.2004.06.040. 
- Koreshev  SN, Smorodinov DS, Nikanorov OV. Imaging properties of discrete holograms. II.  How structural modification of the holoram and a high spatial carrier frequency  of the hologram structure that exceeds the Nyquist frequency affects the image  reconstruction. J Opt Techn 2014; 81(4): 204-208. DOI: 10.1364/JOT.81.000204. 
- Khovanova  NA, Khovanov IA. Methods of analysis of time series [In Russian]. Saratov: "GosUNTs  Kolledzh" Publisher;  2001. 
- Koreshev  SN, Smorodinov DS, Nikanorov OV, Gromov AD. How the method of representing an  object affects the imaging properties of synthesized holograms. J Opt Techn  2015: 82(4): 246-251. DOI: 10.1364/JOT.82.000246.
- Johnson S. Stephen Johnson on Digital Photography. O'Reilly Media,  Incorporated; 2006. ISBN:  978-0-596-52370-1. 
- Slinger  CW, Cameron CD, Coomber SD, Miller RJ, Payne DA, Smith AP, Smith MG, Stanley M, Watson PJ. Recent  developments in computer-generated holography. Proc SPIE 2004; 5209: 27-41. DOI: 10.1117/12.526690. 
- Koreshev  SN, Smorodinov DS, Nikanorov OV, Gromov AD. Intensity equalization for elements  for binary-object images reconstructed using synthesized hologram projectors.  Optics and Spectroscopy 2013; 114(2): 288-292. DOI: 10.1134/S0030400X13020136. 
- Koreshev  SN. The diffraction efficiency of discrete binary phase holograms. Optics and  Spectroscopy [In Russian], 1978, 44(1), 39-42.
- Koreshev  SN, Smorodinov DS, Nikanorov OV, Gromov AD. Synthesizing hologram–projectors  for photolithography on nonplanar surfaces. J Opt Techn 2015; 82(2): 90-94.  DOI: 10.1364/JOT.82.000090.
-   Shehonin AA, ed., Tsukanova GI, Karpova GV, Bagdasarova  OV, Karpov VG, Krivopustova EV, Yezhova KV. Applied Optics. Part 2: Study Guide [In Russian]. Saint-Petersburg: "SPbGITMO  (TU)" Publisher, 2003.
  
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20