Excitonic optical nonlinearity of dielectric nanocomposites in weak optical fields
D.V. Storozhenko, V.P. Dzyuba, Y.N. Kulchin, A.V. Amosov

 

Institute of Automation and Control Processes, FEB Russian Academy of Sciences, Vladivostok, Russia,
Far Eastern Federal University, Vladivostok, Russia

Full text of article: Russian language.

 PDF

Abstract:
The paper presents a model of optical nonlinearity in a dielectric nanoсomposite for wavelengths ranging from 200 to 800 nm and intensities of up to 1000 W/cm2. Results of the numerical modeling of the optical response in a nanocomposite consisting of dielectric nanoparticles Al2O3 with low volume concentration (of the order of 0.3 %) embedded in a transparent dielectric liquid matrix are presented. It is found that with the volume concentration remaining unchanged, the value of nonlinear response in unit volume increases with decreasing nanoparticles size. The spectrum of the nonlinear extra term of the refractive index is shown to be affected by various parameters, such as the size and anisotropy of nanoparticles. It is notable that for 45-nm Al2O3 nanoparticles with 0.3 % volume concentration the value of the nonlinear optical response reaches 1.5·10–4 cm2/W near the resonant absorption band.

Keywords:
exciton; optical nonlinearity; dielectric composites; optical spectrums; nanoparticles; refraction index; resonant susceptibility.

Citation:
Storozhenko DV, Dzyuba VP, Kulchin YN, Amosov AV. Excitonic optical nonlinearity of dielectric nanocomposites in weak optical fields. Computer Optics 2016; 40(6): 855-862. DOI: 10.18287/2412-6179-2016-40-6-855-862.

References:

  1. Ganeev RA, Usmanov T. Nonlinear optical parameters of various media. Quantum Electronics 2007; 37(7): 605-622.
  2. Kulchin YN, Dzyuba VP, Scherbakov AV. Light transmission spectrum of the dielectric nanoparticles inserted into a dielectric matrix. Semiconductors 2009; 43(3): 331-339. DOI: 10.1134/S1063782609030130.
  3. Dzuba V, Kulchin Y, Milichko V. Effect of the shape of a nano-object on quantum-size states. Journal of nanoparticle research 2012; 14(11): 1208. DOI 10.1007/s11051-012-1208-7.
  4. Divya S, Sebastian I, Nampoori VPN, Radhakrishnan P, Mujeeb A. Tailoring optical properties of TiO2 in silica glass for limiting applications. Chinese Physics B 2014; 23(3): 034210. DOI: 10.1088/1674-1056/23/3/034210.
  5. Yan X-Y, Zhang K-X, Yao C-B, Li Q-H. Ultrafast nonlinear optical properties and optical Kerr effect of In-doped ZnO nanowires. Materials Letters 2016; 176: 49-51. DOI:10.1016/j.matlet.2016.04.058.
  6. Sivasubramanian D, Ponnusamy R, Gandhiraj V. Low power optical limiting and thermal lensing in Mn doped ZnO nanoparticles. Material Chemistry and Physics 2015; 159: 93-100. DOI:10.1016/j.matchemphys.2015.03.056.
  7. Koushki E, Farzaneh A, Majles Ara MH. Modeling absorption spectrum and saturation intensity of ZnO nano-colloid. Optik 2013; 125(1): 220-223. DOI:10.1016/j.ijleo.2013.06.007.
  8. Kim HS, Lee MH, Jeong NC, Lee SM, Rhee BK, Yoon KB. Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots very high third-order nonlinear optical activities of intrazeolite PbS. J Am Chem Soc 2006; 128(47): 4-6. DOI: 10.1021/ja0661966.
  9. Dzuba VP, Krasnok AE, Kulchin YN. Nonlinear refractive index of dielectric nanocomposites in weak optical fields. Tech Phys Lett 2010; 36(11): 973-977. DOI: 10.1134/S1063785010110015.
  10. Ganeev RA, Suzuki M, Baba M, Ichihara M, Kuroda H. Low- and high-order nonlinear optical properties of BaTiO3 and SrTiO3 nanoparticles. J Opt Soc Am B 2008; 25(3): 325-333. DOI: 10.1364/JOSAB.25.000325.
  11. Dneprovskii V, Smirnov A, Kozlova M. Self-diffraction of ultrashort laser pulses under resonant excitation of excitons in a colloidal solution of CdSe/ZnS quantum dots. Quantum Electronics 2013; 43(10): 927-930.
  12. Dneprovskii VS, Zhukov EA, Kozlova MV, Wumaier T, Hieu DS, Artem'ev MV. Absorption saturation and self-action processes under resonant excitation of the basic exciton transition in CdSe/ZnS colloidal quantum dots. Physics of the Solid State 2010; 52(9): 1941-1946.
  13. Dzuba V, Kulchin Y, Milichko V. Photonics of heterogeneous dielectric nanostructures. Ch 15. In Book: Ebrahimi, F, ed. Nanocomposites – New Trends and Developments. InTech; 2012. ISBN: 978-953-51-0762-0, DOI: 10.5772/50212.
  14. Milichko VA, Nechaev AI, Valtsifer VA, Strelnikov VN, Kulchin YN, Dzyuba VP. Photo-induced electric polarizability of Fe3O4 nanoparticles in weak optical fields. Nanoscale Research Letters 2013; 8(1): 317. DOI: 10.1186/1556-276X-8-317.
  15. Kupchak IM, Kruchenko YuV, Korbutyak DV. Exciton states and photoluminescence of Si and Ge nanocrystals in Al2O3 matrix. Semiconductors 2008; 42(10): 1194-1199. DOI: 10.1134/S1063782608100096.
  16. He J, Ji W, Ma GH, Tang SH, Elim HI, Sun WX, Zhang ZH, Chin WS. Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique. J Appl Phys 2004; 95(11): 6381-6386. DOI: 10.1063/1.1711183.
  17. Milichko V, Dzuba V, Kulchin Y. Unusual nonlinear optical properties of SiO2 nanocomposite in weak optical fields. Applied Physics A 2013; 111(1): 319-322. DOI 10.1007/s00339-013-7609-3.
  18. Milichko VA, Dzyuba VP, Kulchin YN. Anomalous optical nonlinearity of dielectric nanodispersions. Quantum Electronics 2013; 43(6): 567-573. DOI:10.1070/QE2013v043n06ABEH015171.
  19. Kulchin YN, Dzyuba VP, Milichko VA. Dielectric nano-systems with unique optical properties. Advanced Materials Research 2013; 677: 36-41. DOI:10.4028/www.scientific.net/AMR.677.36.
  20. Dzyuba VP, Krasnok AE, Kulchin YN, Dzyuba IV. A model of nonlinear optical transmittance for insulator nanocomposites. Semiconductors 2011; 45(3): 295-301. DOI: 10.1134/S1063782611030109.
  21. Derbov VL, Serov VV, Teper NI. Investigation of hydrogen atom radiation under the action of TI:Sapphire laser. Computer Optics 2010; 34(2): 156-161.
  22. Alimenkov IV. Automodulation of one-dimensional waves based on nonlinear schredingger equation with nonlinearity cubic-quintic type. Computer Optics 2012; 36(1): 34-36.
  23. Nguyen DT, Voisin C, Roussignol P, Roquelet C, Lauret JS, Cassabois G. Excitonic nonlinearities in single-wall carbon nanotubes. Physica Status Solidi (B) 2012; 249(5): 907-913. DOI:10.1002/pssb.201100064.
  24. Agekyan VF, Serov AY, Filosofov NG, Vorob'ev LE, Melentyev GA, Shalygin VA, Nykänen H, Suihkonen S. Excitonic spectra and electrical conductivity of epitaxial silicon-doped GaN layers. Physics of the Solid State 2013; 55(2): 296-300.
  25. Shen YR. The principles of nonlinear optics. New York: John Willey & Sons; 1984.
  26. Dzyuba VP, Kulchin YN, Amosov AV. The theory of heterogeneous dielectric nanostructures with non-typical low-threshold nonlinearity. Pacific Science Review A: Natural Science and Engineering 2015; 17(2): 41-47. DOI: 10.1016/j.psra.2015.12.005.
  27. Kuznetsova YY, Remeika M, High AA, Hammack AT, Butov LV, Hanson M, Gossard AC. All-optical excitonic transistor. Optics Letters 2010; 35(10): 1587-1589. DOI:10.1364/OL.35.001587.
  28. Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Götzinger S, Sandoghdar V. A single-molecule optical transistor. 2009 IEEE LEOS Annual Meeting Conference Proceedings 2009: 286. DOI: 10.1109/LE­OS.2009.5343277.
  29. Andreakou P, Poltavtsev SV, Leonard JR, Calman EV, Remeika M, Kuznetsova YY, Butov LV, Wilkes J, Hanson M, Gossard AC. Optically controlled excitonic transistor. Applied Physics Letters 2014; 104(9): 091101. DOI: 10.1063/1.4866855.
  30. Jain K. Optical transistor. Applied Physics Letters 1976, 28(12): 719. DOI: 10.1063/1.88627.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20