Thin metalens with high numerical aperture
V.V. Kotlyar, A.G. Nalimov, S.S. Stafeev, L. O'Faolain, M.V. Kotlyar
Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia,
SUPA, School of Physics and Astronomy of the University of St. Andrews, Scotlan
Full text of article: Russian language.
PDF
Abstract:
We designed, numerically simulated, fabricated and characterized a thin metalens in an amorphous silicon film. The lens has a diameter of 30 µm, a 633-nm focal length equal to the incident wavelength, a 220-nm period of the subwavelength features, and a 110-nm relief depth. The lens simultaneously controls the phase and polarization of the incident laser light, transforming linear polarization into the radial one and generating a sharp focus. The metalens was fabricated using electron lithography and reactive ion etching. The focal spot obtained from an incident linearly polarized Gaussian beam of wavelength λ measured 0.49λ and 0.55λ on the x- and y-axes. This is a record-breaking focal spot ever obtained using metalenses. Experimental results agree well with the numerically simulated focal spot size of 0.46λ and 0.52λ.
Keywords:
binary optics, meta surface, polarization, focus, near field microscopy.
Citation:
Kotlyar VV, Nalimov AG, Stafeev SS, O'Faolain L, Kotlyar MV. Thin metalens with high numerical aperture. Computer Optics 2017; 41 (1): 5-12. DOI: 10.18287/2412-6179-2017-41-1-5-12.
References:
- Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139-150. DOI: 10.1038/nmat3839.
- Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP. Dielectric meta-reflectarry for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014; 14(3): 1394-1399. DOI: 10.1021/nl4044482.
- Sun S, Yang K-Y, Wang C-M, Juan T-K, Chen WT, Liao CY, He Q, Xiao S, Kung W-T, Guo G-Y, Zhou L, Tsai DP. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012; 12(12): 6223-6229. DOI: 10.1021/nl3032668.
- Lun L, Jiang W, Ma Y. Three dimensional subwavelength focus by a near-field plate lens. Appl Phys Lett 2013; 102(23): 231119.
- Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 2009; 9(1): 235-238. DOI: 10.1021/nl802830y.
- Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012; 12(9): 4932-4936. DOI: 10.1021/nl302516v.
- Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 2015; 6: 7069. DOI: 10.1038/ncomms8069.
- Arbabi A, Horie Y, Barheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotech 2015; 10(11): 937-943. DOI: 10.1038/NNANO.2015.186.
- Ni X, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Scien Appl 2013; 2(4): e72. DOI: 10.1038/lsa.2013.28.
- West PR, Steward JL, Kildishev AV, Shalaev VM, Shkunov VV, Strohkendl F, ZakharenkovYA, Dodds RK, Byren R. All-dielectric subwavelength metasurface focusing lens. Opt Express 2014; 22(21): 26212-26221. DOI: 10.1364/OE.22.026212.
- Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014; 345(6194): 298-302. DOI: 10.1126/science.1253213.
- Kotlyar VV, Nalimov AG, Kotlyar MV. Modeling a polarization microlens to focus linearly polarized light into a near-circular subwavelength focal spot. Computer optics 2016; 40(4): 451-457. DOI: 10.18287/2412-6179-2016-40-4-451-457.
- Kotlyar VV, Stafeev SS, Liu Y, O’Faolain L, Kovalev AA. Analysis of the shape of a subwavelength focal spot for the linear polarized light. Applied Optics 2013; 52(3): 330-339. DOI: 10.1364/AO.52.000330.
- Stafeev SS, Kotlyar VV, O'Faolain L. Subwavelength focusing of laser light by microoptics. J Mod Opt 2013; 60(13): 1050-1059. DOI: 10.1080/09500340.2013.831136.
- Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beams. Physical Review Letters 2003; 91: 233901. DOI: 10.1103/PhysRevLett.91.233901.
- Nalimov AG, O’Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelength microoptics element for polarization conversion from linear to radial. Computer optics 2014; 38(2): 229-236.
- Stafeev SS, O’Faolain L, Kotlyar VV, Nalimov AG. Tight focus of light using micropolarizer and microlens. Applied Optics 2015; 54(14): 4388-4394. DOI: 10.1364/AO.54.004388.
- Stafeev SS, Kotlyar MV, O’Faoline L, Nalimov AG, Kotlyar VV. A four-zone transmission azimuthal micropolarizer with phase shift. Computer optics 2016; 40(1): 12-18. DOI: 10.18287/2412-6179-2016-40-1-12-18.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20