Fractional orbital angular momentum of a Gaussian beam with an embedded off-axis optical vortex
V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, E.G. Abramochkin

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia,
Samara Branch of P.N. Lebedev Physical Institute of Russian Academy of Sciences, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
We theoretically and experimentally study asymmetric Gaussian optical vortices generated via diffracting a Gaussian beam by an off-axis spiral phase plate or amplitude "fork" hologram. It is shown that depending on the magnitude of the off-axis shift the laser beam can acquire a  crescent-shaped cross-section, which rotates on propagation. We obtain an analytical expression for the orbital angular momentum (OAM) of such a beam, which appears to be fractional. We show that with increasing off-axis shift, the OAM decreases parabolically. The experimental results are in qualitative agreement with theory and numerical simulation.

Keywords:
fractional orbital angular momentum, Gaussian beam, optical vortex, spiral phase plate.

Citation:
Kotlyar VV, Kovalev AA, Porfirev AP, Abramochkin EG. Fractional orbital angular momentum of a Gaussian beam with an embedded off-axis optical vortex. Computer Optics 2017; 41(1): 22-29. DOI: 10.18287/2412-6179-2017-41-1-22-29.

References:

  1. Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412: 313-316. DOI: 10.1038/35085529.
  2. Vaziri A, Weihs G, Zeilinger A. Superpositions of the orbital angular momentum for applications in quantum experiments. J Opt B: Quant Semicl Opt 2002; 4(2): S47-51.
  3. Chen Q-F, Shi B-S, Zhang Y-S, Guo G-G. Entanglement of the orbital angular momentum states of the photon pairs generated in a hot atomic ensemble. Phys Rev A 2008; 78: 053810. DOI: 10.1103/PhysRevA.78.053810.
  4. Janicijevic L, Topuzoski S. Gaussian laser beam transformation into an optical vortex beam by helical lens. J Mod Opt 2016; 63(2): 164-76. DOI: 10.1080/09500340.2015.1085106.
  5. Ricci F, Löffler W, van Exter MP. Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer. Opt Express 2012; 20(20): 22961-22975. DOI: 10.1364/OE.20.022961.
  6. Kumar A, Vaity P, Singh RP. Crafting the core asymmetry to lift the degeneracy of optical vortices. Opt Express 2011; 19(7): 6182-6190. DOI: 10.1364/OE.19.006182.
  7. Dennis MR. Rows of optical vortices from elliptically perturbing a high-order beam. Opt Lett 2006; 31(9): 1325-1327. DOI: 10.1364/OL.31.001325.
  8. Kotlyar VV, Khonina SN, Almazov AA, Soifer VA, Jefimovs K, Turunen J. Elliptic Laguerre-Gaussian beams. JOSA A 2006; 23(1): 43-56. DOI: 10.1364/JOSAA.23.000043.
  9. Li Z, Zhang M, Liang G, Li X, Chen X, Cheng C. Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination. Opt Express 2013; 21(13): 15755-15764. DOI: 10.1364/OE.21.015755.
  10. Kotlyar VV, Kovalev AA, Soifer VA. Asymmetric Bessel modes. Opt Lett 2014; 39(8): 2395-2398. DOI: 10.1364/OL.39.002395.
  11. Kovalev AA, Kotlyar VV, Pofirev AP. Asymmetric La­guerre-Gaussian beams. Phys Rev A 2016; 93(6): 063858. DOI: 10.1103/PhysRevA.93.063858.
  12. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex Hermite-Gaussian laser beams. Opt Lett 2015; 40(5): 701-704. DOI: 10.1364/OL.40.000701.
  13. Bazhenov VYu, Vasnetsov MV, Soskin MS. Laser beams with screw dislocations in their wavefront. JETP Letters 1990; 52(8): 429-431.
  14. Allen L, Beijersberger MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  15. Kotlyar VV, Kovalev AA. Hermite-Gaussian modal laser beams with orbital angular momentum. JOSA A 2014; 31(2): 274-282. DOI: 10.1364/JOSAA.31.000274.
  16. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series, Special Functions. New York: Gordon and Breach; 1986. ISBN: 978-2881240904.
  17. Kotlyar VV, Almazov AA, Khonina SN, Soifer VA, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. JOSA A 2005; 22(5): 849-861. DOI: 10.1364/JOSAA.22.000849.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20