Wave front aberration compensation of spacecraft telescopes with telescope temperature field adjustment
J.M. Klebanov, A.V. Karsakov, C.N. Khonina, A.N. Davydov, K.A. Polyakov

 

Samara State Technical University, Samara, Russia,
Samara National Research University, Samara, Russia,

Image Processing Systems Institute of RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
A technique of wave front aberration compensation for space telescopes is considered. According to the technique introduced, first, point spread functions (PSF) for the range of temperature field parameters and mirrors displacements are calculated. Then, the calculated PSF closest to the measured one is assumed as a base for the optimization procedure, according to which a set of the parameters most precisely approximating the measured PSF is obtained.

Keywords:
controlled mirror, active optics, optical and mechanical analysis, aberrations, space telescope, optical resolution, finite elements method, control system, wave front.

Citation:
Klebanov IM, Karsakov AV, Khonina SN, Davydov AN, Polyakov KA. Wave front aberration compensation of space telescopes with telescope temperature field adjustment. Computer Optics 2017; 41(1): 30-36. DOI: 10.18287/0134-2452-2017-41-1-30-36.

References:

  1. Thelen BJ Paxman RG, Carrara DA, Seldin JH. Maximum a posteriori estimation of fixed aberrations, dynamic aberrations, and the object from phase-diverse speckle data. Journal of the Optical Society of America A 1999; 16(5): 1016-1025. DOI: 10.1364/JOSAA.16.001016.
  2. Beckers JM. Adaptive optics for astronomy:principles, performance, and applications. Annual Review of Astronomy and Astrophysics 1993; 31(1): 13-62. DOI: 10.1146/annurev.aa.31.090193.000305.
  3. Roddier F. Adaptive optics in astronomy. Cambridge, U.K., New York, NY: Cambridge University Press; 1999. ISBN: 052155375X.
  4. Hickson P. Wave-front curvature sensing from a single defocused image. Journal of the Optical Society of America A 1994; 11(5): 1667-1673. DOI: 10.1364/JOSAA.11.001667.
  5. Tokovinin A, Heathcote S. DONUT: measuring optical aberrations from a single extrafocal image. Publications of the Astronomical Society of the Pacific 2006; 118(846): 1165-1175. DOI: 10.1086/506972.
  6. Woods DA, Shah R, Johnson J, Szabo A, Pearce EC, Lambour R, FaccendaW. The space surveillance telescope: focus and alignment of a three mirror telescope. Optical Engineering 2013; 52 (5): 053604. DOI: 10.1117/1.OE.52.5.053604.
  7. Booth MJ. Wavefront sensorless adaptive optics for large aberrations. Optics Letters 2007; 32 (1): 5-7. DOI: 10.1364/OL.32.000005.
  8. Ha Y, Zhao D, Wang Y, Kotlyar VV, Khonina SN, Soifer VA. Diffractive optical element for Zernike decomposition. Proceedings of SPIE 1998; 3557: 191-197. DOI: 10.1117/12.318300.
  9. Porfirev AP, Khonina SN. Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions. Proceedings of SPIE 2016; 9807: 98070E. DOI: 10.1117/12.2231378.
  10. Khonina SN, Kotlyar VV, Soifer VA, Wang Y, Zhao D. Decomposition of a coherent light field using a phase Zernike filter. Proceedings of SPIE 1998; 3573: 550-553.
  11. McLeod В. Collimation of fast wide-field telescopes. Publications of the Astronomical Society of the Pacific 1996; 108(720): 217-219.
  12. Noethe L, Guisard S. Analytic expressions for field astigmatism in decentered two mirror telescopes and application to the collimation of the ESO VLT. Astronomy and Astrophysics Supplement Series 2000; 144(1): 157-167. DOI: 10.1051/aas:2000201.
  13. Terret DL, Sutherland WJ. The interaction between pointing and active optics on the VISTA telescope. Proc SPIE: Software and Cyberinfrastructure for Astronomy 2010; 7740: 77403A. DOI: 10.1117/12.856365.
  14. Rakich A, Hill JM, Biddick CJ, Miller DL, Leibold T. Use of field aberrations in the alignment of the Large Binocular Telescope optics. Proceedings of SP1E: Ground-based and Airborne Telescopes II 2008; 7012: 70121L. DOI: 10.1117/12.789902.
  15. Blanco DR. Near-perfect collimation of wide-field Cassegrain telescopes. Publications of the Astronomical Society of the Pacific 2012; 124(911): 36-41. DOI: 10.1086/663976.
  16. Thompson КP, Schmid T, Rolland JP. The misalignment induced aberrations of TMA telescopes Optics Express 2008; 16(25): 20345-20353. DOI: 10.1364/OE.16.020345.
  17. Sebag J, Gressler W, Schmid T, Rolland JP, Thompson KP. LSST Telescope alignment plan based on nodal aberration theory Publications of the Astronomical Society of the Pacific 2012; 124(914): 380-390.
  18. Schechter PL, Levinson RS. Generic misalignment aberration patterns in wide-field telescopes. Publications of the Astronomical Society of the Pacific 2011; 123(905): 812-832. DOI: 10.1086/661111.
  19. Sokolsky MN. Admissions and quality of the optical image [In Russian]. Leningrad: “Mashinostroenie” Publisher; 1989. ISBN: 5-217-00547-5.
  20. Kim S, Yang HS, Lee YW, Kim SW. Merit function regression method for efficient aligment control of two-mirror optical systems. Optics Express 2007; 15(8): 5059-5068. DOI: 10.1364/OE.15.005059.
  21. Kovaleneko AD. Fundamentals of thermoelasticity [In Russian]. Kiev: “Naukova Dumka” Publisher; 1970.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20