Abnormal behaviour detection method for video surveillance applications
R.A. Shatalin, V.R. Fidelman, P.E. Ovchinnikov
Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
Full text of article: Russian language.
PDF
Abstract:
In this paper, we propose novel method for abnormal behavior detection in the video surveillance. The method constructs a normal behavior model using training samples, which makes possible application in a wide range of conditions and scenes. The method was tested in controlled and real conditions. The result shows that the method can be used to detect abnormal behavior in simple and crowded scenes.
Keywords:
video analysis, surveillance, anomaly detection, crowded scene, principal component analysis.
Citation:
Shatalin RA, Fidelman VR, Ovchinnikov PE. Abnormal behavior detection method for video surveillance applications. Computer Optics 2017; 41(1): 37-45. DOI: 10.18287/2412-6179-2017-41-1-37-45.
References:
- Stringa E, Regazzoni CS. Real-time video-shot detection for scene surveillance applications. IEEE Transactions on Image Processing, 2000, 9(1): 69-79.
- Nasution AH, Emmanuel S. Intelligent video surveillance for monitoring elderly in home environments. In: Proceedings of IEEE 9th Workshop on Multimedia Signal Processing, 2007, p. 203-206. DOI: 10.1109/MMSP.2007.4412853.
- Lavee G, Rivlin E, Rudzsky M. Understanding video events: a survey of methods for automatic interpretation of semantic occurrences in video. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2009, 39(5): 489-504.
- Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Computing Surveys (CSUR) 2009; 41(3): 15. DOI: 10.1145/1541880.1541882.
- Denisova AYu, Myasnikov VV. Anomaly detection for hyperspectral imaginary. Computer Optics 2014; 38(2): 287-296.
- Jolliffe IT. Principal component analysis. 2nd ed. NY, Berlin, Heidelberg: Springer-Verlag; 2002. ISBN: 0-387-95442-2.
- Yu TH, Moon YS. Unsupervised abnormal behavior detection for real-time surveillance using observed history. In: Proceedings of MVA2009 IAPR Conference on Machine Vision Applications, Yokohama, Japan, 2009: 166-169.
- Kim J, Grauman K. Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates. In: Proc IEEE CVPR 2009: 2921-2928. DOI: 10.1109/CVPR.2009.5206569.
- Mahadevan V, Li W, Bhalodia V, Vasconcelos N. anomaly detection and localization in crowded scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 2014, 36(1): 18-32.
- Minaev EYu, Nikoronov AV. Object detection and recognition in the driver assistance system based on the fractal analysis. Computer Optics 2012; 36(1): 124-130.
- Brutzer S, Hoferlin B, Heidemann G. Evaluation of background subtraction techniques for video surveillance. In: Proc IEEE CVPR 2011: 1937-1944. DOI: 10.1109/CVPR.2011.5995508.
- Maddalena L, Petrosino A. A self-organizing approach to background subtraction for visual surveillance application. IEEE Transactions on Image Processing 2008, 17(7): 1168-1177.
- Ovchinnikov P, Shatalin R. Background subtraction quality criterion based on morphological operations for behaviour anomaly detection [In Russian], Control systems and Information Technologies 2014, 56(2.1):190-194.
- Fleet DJ, Weiss Y. Optical flow estimation. In Book: Paragios N, Chen Y, Faugeras O, eds. Handbook of mathematical models in computer vision. Chapter IV. US: Springer; 2009: 239-258. ISBN: 978-0-387-26371-7. DOI: 10.1007/0-387-28831-7_15.
- Bouguet JY. Pyramidal implementation of the lucas kanade feature tracker, Intel Corporation, Microprocessor Research Labs; 2000.
- Antonakaki P, Kosmopoulos D, Perantonis S. detecting abnormal human behavior using multiple cameras. Signal Proccesing 2009, 89(9):1723-1738. DOI: 10.1016/j.sigpro.2009.03.016.
- Hall M. Correlation based feature selection for machine learning. Doctoral dissertation. Hamilton, NewZealand: The University of Waikato, Department of Computer Science; 1999.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20