Geometric method for large Morse clusters formation
A.N. Kovartsev
   
  Samara National Research  University, Samara, Russia
Full text of article: Russian language.
  PDF
Abstract:
This paper describes a  geometrically founded method for constructing the initial configuration of a  complete icosahedral structure of an atomic cluster. The method finds a global  minimum of the cluster energy as a result of a single local optimization  procedure. The method is based on the proposed algorithm for the stratified  accommodation of atom centers, that allows one to form structural  configurations commonly found among the clusters with global minimum of  interatomic interaction energy. This algorithm provides the ability to build a  spatial configuration of the dense packing of spheres for the formation of  icosahedral and decahedral structures, as well as building complete icosahedrons  with a large number of atoms. With the proposed method, we have reached the  global minima for large Morse clusters (N = 817,  923, and 1415), which is a record for Morse clusters with r = 6.
Keywords:
atomic and molecular  physics, numerical approximation, numerical analysis, global optimization,  Morse clusters.
Citation:
Kovartsev AN.  Geometric method for large morse clusters formation. Computer Optics 2017;  41(1): 118-125. DOI: 10.18287/2412-6179-2017-41-1-118-125.
References:
  - Gusev AI. Nanomaterials,  nanostructures, nanotechnology [In Russian]. Moscow: "Fizmatlit" Publisher, 2007.  ISBN: 978-5-9221-0582-8. 
 
  - Stolyarchuk MV, Demichev IA, Sidorov  AI. Quantum-chemical modeling of molecular clusters in the program ADF:  Schoolbook for the implementation of a laboratory practical work [In Russian].  Saint-Peterburg: "ITMO" Publisher; 2015. 
 
  - Kovartsev AN, Popova-Kovartseva DA.  On efficiently of parallel algorithms for global optimization of functions of  several variables [In Russian]. Computer Optics 2011; 35(2): 256-261.
 
  - Heiles S, Johnston RL. Global optimization of clusters  using electronic structure methods. Quantum Chemistry  2013; 113(18): 2091-2109. DOI: 10.1002/qua.24462. 
 
  - Doye JPK, Wales DJ. Structural consequences  of the range of the interatomic potential: a menagerie of clusters.  Journal of the Chemical Society, Faraday Transactions 1997; 93: 4233-4244. DOI:  10.1039/A706221D.
 
  - Ren L, Cheng L. Structural  prediction of (Au20)N (N=2-40) clusters and their building-up principle.  Computational and Theoretical Chemistry 2012; 984: 142-147. DOI:  10.1016/j.comptc.2012.01.024.
 
  - Cheng L, Feng Y, Yang J, Yang J.  Funnel hopping: searching the cluster potential energy surface over the  funnels. J Chem Phys 2009; 130(21): 214112. DOI: 10.1063/1.3152121.
 
  - Shao N, Huang W, Gao Y, Wang LM, Li  X, L.S. Wang, Zeng XC. Probing the structural evolution of medium-sized  gold clusters: Aun- (n=27-35). JACS 2010; 132(18): 6596-6605. DOI: 10.1021/ja102145g.
 
  - Lourenço N, Pereira FB. DACCO: A  discrete ant colony algorithm to cluster geometry optimization. GECCO ’12  2012: 41-48. DOI: 10.1145/2330163.2330170.
 
  - Kovartsev AN. A deterministic  evolutionary algorithm for the global optimization of morse cluster. Computer  Optics 2011; 39(2): 234-240. DOI: 10.18287/0134-2452-2015-39-2-234-240. 
 
  - Posypkin MA. Numerical methods and  the distributed software infrastructure for structural cluster optimizations  [In Russian]. Proc PaVT'2009 2009: 269-280.
 
  - Oakley MT, Johnson RL, Wales DJ.  Symmetrisation schemes for global optimisation of atomic clusters. PCCP 2013;  15: 3965-3976. DOI: 10.1039/C3CP44332A.
 
  - Wu X, Cai W, Shao X. A dynamic  lattice searching method with rotation operation for optimization of large  clusters. Chem Phys 2009; 363(1-3): 72-77. DOI: 10.1016/j.chemphys.2009.08.001.
 
  - Locatelli M, Schoen F. Global  optimization: Theory, algorithms and applications. SIAM; 2013. ISBN: 978-1-611972-66-5.
 
  - Locatelli M, Schoen F. Local search  based heuristics for global optimization: Atomic clusters and beyond. European  Journal of Operational Research 2012; 222(1): 1-9. DOI:  10.1016/j.ejor.2012.04.010. 
 
  - Dugan N, Erkoç S. Genetic algorithms  in application to the geometry optimization of nanoparticles. Algorithms 2009;  2(1): 410-428. DOI: 10.3390/a2010410.
 
  - Larsson HR, van Duin ACT, Hartke B.  Global optimization of parameters in the reactive force field ReaxFF for SiOH.  J Comput Chem 2013; 34(25): 2178-2189. DOI: 10.1002/jcc.23382.
 
  - Hales  TC. A proof of the Kepler conjecture. Annals of Mathematics  2005; 162(3): 1065-1185. DOI: 10.4007/annals.2005.162.1065.
 
  - Morse clusters: Table of global minima. Source: áhttp://staff.ustc.edu.cn/~clj/morse/table.htmlñ.
 
  - The Cambridge  energy landscape database [Electronic resource]. Source: áhttp://www-wales.ch.cam.ac.uk/CCD.htmlñ. 
 
  - Pullan W. Unbiased geometry  optimisation of Morse atomic clusters. Proc WCCI 2010: 4496-4502. DOI:  10.1109/CEC.2010.5586213.
 
  - Kondrashov VE, Korolev SB. MATLAB as  a programming system of scientific and technical calculations [In Russian]. Moscow: "Mir"  Publisher; 2002. ISBN: 5-03-003457-7. 
 
  -   Berry RS, Smyrnov BM, Strizhev AYu. Competition  between face-centered cubic and icosahedral cluster structures. JETP 1997;  85(3): 588-592. DOI: 10.1134/1.558342.
  
 
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20