Geometric method for large Morse clusters formation
A.N. Kovartsev
Samara National Research University, Samara, Russia
Full text of article: Russian language.
PDF
Abstract:
This paper describes a geometrically founded method for constructing the initial configuration of a complete icosahedral structure of an atomic cluster. The method finds a global minimum of the cluster energy as a result of a single local optimization procedure. The method is based on the proposed algorithm for the stratified accommodation of atom centers, that allows one to form structural configurations commonly found among the clusters with global minimum of interatomic interaction energy. This algorithm provides the ability to build a spatial configuration of the dense packing of spheres for the formation of icosahedral and decahedral structures, as well as building complete icosahedrons with a large number of atoms. With the proposed method, we have reached the global minima for large Morse clusters (N = 817, 923, and 1415), which is a record for Morse clusters with r = 6.
Keywords:
atomic and molecular physics, numerical approximation, numerical analysis, global optimization, Morse clusters.
Citation:
Kovartsev AN. Geometric method for large morse clusters formation. Computer Optics 2017; 41(1): 118-125. DOI: 10.18287/2412-6179-2017-41-1-118-125.
References:
- Gusev AI. Nanomaterials, nanostructures, nanotechnology [In Russian]. Moscow: "Fizmatlit" Publisher, 2007. ISBN: 978-5-9221-0582-8.
- Stolyarchuk MV, Demichev IA, Sidorov AI. Quantum-chemical modeling of molecular clusters in the program ADF: Schoolbook for the implementation of a laboratory practical work [In Russian]. Saint-Peterburg: "ITMO" Publisher; 2015.
- Kovartsev AN, Popova-Kovartseva DA. On efficiently of parallel algorithms for global optimization of functions of several variables [In Russian]. Computer Optics 2011; 35(2): 256-261.
- Heiles S, Johnston RL. Global optimization of clusters using electronic structure methods. Quantum Chemistry 2013; 113(18): 2091-2109. DOI: 10.1002/qua.24462.
- Doye JPK, Wales DJ. Structural consequences of the range of the interatomic potential: a menagerie of clusters. Journal of the Chemical Society, Faraday Transactions 1997; 93: 4233-4244. DOI: 10.1039/A706221D.
- Ren L, Cheng L. Structural prediction of (Au20)N (N=2-40) clusters and their building-up principle. Computational and Theoretical Chemistry 2012; 984: 142-147. DOI: 10.1016/j.comptc.2012.01.024.
- Cheng L, Feng Y, Yang J, Yang J. Funnel hopping: searching the cluster potential energy surface over the funnels. J Chem Phys 2009; 130(21): 214112. DOI: 10.1063/1.3152121.
- Shao N, Huang W, Gao Y, Wang LM, Li X, L.S. Wang, Zeng XC. Probing the structural evolution of medium-sized gold clusters: Aun- (n=27-35). JACS 2010; 132(18): 6596-6605. DOI: 10.1021/ja102145g.
- Lourenço N, Pereira FB. DACCO: A discrete ant colony algorithm to cluster geometry optimization. GECCO ’12 2012: 41-48. DOI: 10.1145/2330163.2330170.
- Kovartsev AN. A deterministic evolutionary algorithm for the global optimization of morse cluster. Computer Optics 2011; 39(2): 234-240. DOI: 10.18287/0134-2452-2015-39-2-234-240.
- Posypkin MA. Numerical methods and the distributed software infrastructure for structural cluster optimizations [In Russian]. Proc PaVT'2009 2009: 269-280.
- Oakley MT, Johnson RL, Wales DJ. Symmetrisation schemes for global optimisation of atomic clusters. PCCP 2013; 15: 3965-3976. DOI: 10.1039/C3CP44332A.
- Wu X, Cai W, Shao X. A dynamic lattice searching method with rotation operation for optimization of large clusters. Chem Phys 2009; 363(1-3): 72-77. DOI: 10.1016/j.chemphys.2009.08.001.
- Locatelli M, Schoen F. Global optimization: Theory, algorithms and applications. SIAM; 2013. ISBN: 978-1-611972-66-5.
- Locatelli M, Schoen F. Local search based heuristics for global optimization: Atomic clusters and beyond. European Journal of Operational Research 2012; 222(1): 1-9. DOI: 10.1016/j.ejor.2012.04.010.
- Dugan N, Erkoç S. Genetic algorithms in application to the geometry optimization of nanoparticles. Algorithms 2009; 2(1): 410-428. DOI: 10.3390/a2010410.
- Larsson HR, van Duin ACT, Hartke B. Global optimization of parameters in the reactive force field ReaxFF for SiOH. J Comput Chem 2013; 34(25): 2178-2189. DOI: 10.1002/jcc.23382.
- Hales TC. A proof of the Kepler conjecture. Annals of Mathematics 2005; 162(3): 1065-1185. DOI: 10.4007/annals.2005.162.1065.
- Morse clusters: Table of global minima. Source: áhttp://staff.ustc.edu.cn/~clj/morse/table.htmlñ.
- The Cambridge energy landscape database [Electronic resource]. Source: áhttp://www-wales.ch.cam.ac.uk/CCD.htmlñ.
- Pullan W. Unbiased geometry optimisation of Morse atomic clusters. Proc WCCI 2010: 4496-4502. DOI: 10.1109/CEC.2010.5586213.
- Kondrashov VE, Korolev SB. MATLAB as a programming system of scientific and technical calculations [In Russian]. Moscow: "Mir" Publisher; 2002. ISBN: 5-03-003457-7.
- Berry RS, Smyrnov BM, Strizhev AYu. Competition between face-centered cubic and icosahedral cluster structures. JETP 1997; 85(3): 588-592. DOI: 10.1134/1.558342.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20