Difference solutions of the wave equation on GPU with reuse of pairwise sums of the differential template
D.G. Vorotnikova, D.L. Golovashkin
Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia
Full text of article: Russian language.
PDF
Abstract:
This work proposes a technique for constructing vector algorithms for solving the diffraction problem using a finite difference scheme on GPUs. The use of an approach based on the reuse of sums of the differential pattern when solving the D' Alembert equation allowed up to a three-fold reduction in the running time in comparison with the known algorithms.
Keywords:
vector algorithms, wave equation, acceleration of computing.
Citation:
Vorotnikova DG, Golovashkin DL. Difference solutions of the wave equation on GPU with reuse of pairwise sums of the differential template. Computer Optics 2017; 41(1): 134-138. DOI: 10.18287/2412-6179-2017-41-1-134-138.
References:
- Taflove A, Hagness S. Computational Electrodynamics: The Finite-Difference Time-Domain. Boston: Arthech House Publishers; 2005. ISBN: 978-1-58053-832-9.
- Soifer VA, ed. Diffraction nanophotonics [In Russian]. Moscow: “Fizmatlit” Publisher; 2011. ISBN: 978-5-9221-1237-6.
- Klimov VV. Nanoplasmonics [In Russian]. Moscow: “Fizmatlit” Publisher; 2009. ISBN: 978-5-922110-30-3.
- Lourtioz JM, Benistry H, Berger V, Gerard JM, Maystre D, Tchelnokov A, Pagnoux D. Photonic Crystals. Towards Nanoscale Photonic Devices. 2nd ed. Berlin, Heidelberg: Springer-Verlag; 2008. ISBN: 978-3-540-78346-6.
- Kozlova ES, Kotlyar VV. Simulation of ultrafast 2D light pulse. Computer Optics 2012; 36(2): 158-164.
- Kozlova ES, Kotlyar VV. Simulations of Sommerfeld and brillouin precursors in the medium with frequency dispersion using numerical method of solving wave equations. Computer Optics 2013; 37(2): 146-154.
- Neganov VA, Raevskiy SB, Yarovoy GP. Linear macroscopic electrodynamics [In Russian]. Moscow: “Radio i Svyaz” Publisher; 2000. ISBN 5-256-01505-2.
- Wahl P, LyGagnon DS, Debaes Ch, Miller DAB, Thienpont H. B-CALM: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics. Opt Quant Electron 2012; 44(3): 285-290. DOI: 10.1007/s11082-012-9558-z.
- Malysheva SA, Golovashkin DL. Implementation of the FDTD algorithm on GPU using a pyramid method. Computer Optics 2016; 40(2): 179-187. DOI: 10.18287/2412-6179-2016-40-2-179-187.
- Zakirov AV, Levchenko VD, Perepelkina AYu, Zempo Yasunari High performance FDTD code implementation for GPGPU supercomputers. Keldysh Institute Preprints 2016; 44. DOI: 10.20948/prepr-2016-44-e.
- Vorotnikova DG, Golovashkin DL. Long vectors algorithms for solving grid equations of explicit difference schemes. Computer Optics 2015; 39(1): 87-93.
- Golub GH, Van Loan ChF. Matrix Computations. JHU Press; 1996. ISBN: 0-8018-5414-8.
- Samarskiy AA. The theory of difference schemes [In Russian]. Moscow: Nauka; 1977.
- Anderson E, Brooks J, Grassel Ch. Performance of the CRAY multiprocessors. The Supplemental Performance Report; 1996.
- Vorotnikova DG, Golovashkin DL, Kochurov AV. Modeling of GPU computing using difference schemes. Computer Optics 2015; 39(5): 801-807. DOI: 10.18287/0134-2452-2015-39-5-801-807.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20