Tight focusing of a sector-wise azimuthally polarized optical vortex
S.S. Stafeev, V.V. Kotlyar

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
In this article we numerically investigated tightly focusing an optical vortex with sector-wise azimuthal polarization by a Fresnel zone plate with numerical aperture NA = 0.95. The focal spot produced by a six-sector beam was shown practically not to differ from the focus produced by an ideal azimuthally polarized optical vortex, with the difference in the size of the focal spots not exceeding 0.001 of the wavelength of light.

Keywords:
tight focusing, azimuthally polarized light, optical vortex.

Citation:
Stafeev SS, Kotlyar VV. Tight focusing of a sector-wise azimuthally polarized optical vortex. Computer Optics 2017; 41(2): 147-154. DOI: 10.18287/2412-6179-2017-41-2-147-154.

References:

  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1: 1-57. DOI: 10.1364/AOP.1.000001.
  2. Anita GT, Umamageswari N, Prabakaran K, Pillai TVS, Rajesh KB. Effect of coma on tightly focused cylindrically polarized vortex beams. Optics & Laser Technology 2016; 76: 1-5. DOI: 10.1016/j.optlastec.2015.07.002.
  3. Yuan GH, Wei SB, Yuan X-C. Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram. JOSA A 2011; 28(8): 1716-1720. DOI: 10.1364/JOSAA.28.001716.
  4. Suresh P, Mariyal C, Rajesh KB, Pillai TVS, Jaroszewicz Z. Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask. Appl Opt 2013; 52(4): 849-853. DOI: 10.1364/AO.52.000849.
  5. Yuan GH, Wei SB, Yuan X-C. Nondiffracting transversally polarized beam. Opt Lett 2011; 36(17): 3479-3481. DOI: 10.1364/OL.36.003479.
  6. Chen Z, Zhao D. 4Pi focusing of spatially modulated radially polarized vortex beams. Opt Lett 2012; 37(8): 1286-1288. DOI: 10.1364/OL.37.001286.
  7. Ndagano B, Sroor H, McLaren M, Rosales-Guzmán C, Forbes A. Beam quality measure for vector beams. Opt Lett 2016; 41(15): 3407-3410. DOI: 10.1364/OL.41.003407.
  8. Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Scientific Reports 2015; 5: 09977. DOI: 10.1038/srep09977.
  9. Porfirev AP, Ustinov AV, Khonina SN. Polarization conversion when focusing cylindrically polarized vortex beams. Scientific Reports 2016; 6: 6. DOI: 10.1038/s41598-016-0015-2.
  10. Hao X, Kuang C, Wang T, Liu X. Phase encoding for sharper focus of the azimuthally polarized beam. Opt Lett 2010; 35(23): 3928-3930. DOI: 10.1364/OL.35.003928.
  11. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Phys Rev Lett 2003; 91(23): 233901. DOI: 10.1103/PhysRevLett.91.233901.
  12. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Efficient extracavity generation of radially and azimuthally polarized beams. Opt Lett 2007; 32(11): 1468-1470. DOI: 10.1364/OL.32.001468.
  13. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams. Opt Commun 2008; 281(4): 732-738. DOI: 10.1016/j.optcom.2007.10.088.
  14. Alferov SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates. Computer Optics 2014; 38(1): 57-64.
  15. Imai R, Kanda N, Higuchi T, Zheng Z, Konishi K, Kuwata-Gonokami M. Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry. Opt Express 2012; 20(20): 21896-21904. DOI: 10.1364/OE.20.021896.
  16. Man Z, Min C, Zhang Y, Shen Z, Yuan X-C. Arbitrary vector beams with selective polarization states patterned by tailored polarizing films. Laser Phys 2013; 23(10): 105001. DOI: 10.1088/1054-660X/23/10/105001.
  17. Nalimov AG, O'Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelength microoptics element for polarization conversion from linear to radial. Computer Optics 2014; 38(2): 229-236.
  18. Stafeev SS, Nalimov AG, Kotlyar MV, Gibson D, Song S, O’Faolain L, Kotlyar VV. Microlens-aided focusing of linearly and azimuthally polarized laser light. Opt Express 2016; 24(26): 29800-29813. DOI: 10.1364/OE.24.029800.
  19. Kotlyar VV, Stafeev SS, Kotlyar MV, Nalimov AG, O’Faolain L. Subwavelength micropolarizer in a gold film for visible light. Appl Opt 2016; 55(19): 5025-5032. DOI: 10.1364/AO.55.005025.
  20. Man Z, Min C, Zhu S, Yuan X-C. Tight focusing of quasi-cylindrically polarized beams. JOSA A 2014; 31(2): 373-378. DOI: 10.1364/JOSAA.31.000373.
  21. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20