Hybrid asymptotic method for analyzing caustics of  optical elements in the axially symmetric case
  S.I. Kharitonov, S.G. Volotovsky, S.N. Khonina
   
  IPSI RAS – Branch of the  FSRC “Crystallography and Photonics” RAS, Samara,  Russia,
 Samara National Research University, Samara, Russia
 
Full text of article: Russian language.
  PDF
Abstract:
In this work we propose  a new approach to calculating the distribution of light fields in the framework  of geometrical optics. A new integral operator for computing the intensity  distribution in the geometrical optics approximation is suggested. Using the  proposed method, we derive the intensity distributions of previously studied  wavefronts. Singular points of these distributions are found and the intensity  distributions near the caustics are calculated. The developed method is used to  calculate the formation of caustics by harmonic diffractive optical elements in  the axially symmetric case. 
Keywords:
geometrical optics,  caustic, fractional axicon, harmonic diffractive lens.
Citation:
Kharitonov SI,  Volotovsky SG, Khonina SN. Hybrid asymptotic method for analyzing caustics of  optical elements in the axially symmetric case. Computer Optics 2017; 41(2): 175-182. DOI:  10.18287/2412-6179-2017-41-2-175-182.
References:
  - Bobrov ST,  Greysukh GI, Turkevich YuG. Optics of diffractive elements and systems [In  Russian]. Leningrad:  “Mashinostroenie” Publisher; 1986.
 
  - Greysukh  GI, Ezhov EG, Stepanov SA. Comparative analysis of the chromatizm of  diffractive and refractive lenses [in Russian]. Computer Optics 2005; 28:  60-65.
 
  - Kazanskiy  NL, Kharitonov SI, Karsakov AV, Khonina SN. Modeling action of a  hyperspectrometer based on the Offner scheme within geometric optics. Computer  Optics 2014; 38(2): 271-280.
 
  - Kazanskii  NL, Khonina SN, Skidanov RV, Morozov AA, Kharitonov SI, Volotovskiy SG.  Formation of images using multi-level diffractive lens. Computer Optics 2014;  38(3): 425-434.
 
  - Karpeev SV,  Khonina SN, Kharitonov SI. Study of the diffraction grating on the convex  surface as a dispersive element. Computer Optics 2015; 39(2): 211-217. DOI:  10.18287/0134-2452-2015-39-2-211-217.
 
  - Soifer VA, ed. Computer  Design of Diffractive Optics. Woodhead Publishing and Cambridge International Science Publishing;  2012. ISBN: 978-1845696351.
 
  - Soifer VA, ed.  Diffractive Nanophotonics. Boca    Raton, USA: CRC  Press; 2014. ISBN: 978-1466590694.
 
  - Sweeney DW,  Sommargen GE. Harmonic diffractive lenses. Applied Optics 1995; 34(14):  2469-2475. DOI: 10.1364/AO.34.002469.
 
  - Rossi M, Kunz RE, Herzig HP. Refractive and diffractive  properties of planar micro-optical elements. Applied Optics 1995; 34(26):  5996-6007. DOI: 10.1364/AO.34.005996.
 
  - Kharitonov SI,  Volotovsky SG, Khonina SN. Geometric-optical calculation of the focal spot  of a harmonic diffractive lens. Computer Optics 2016; 40(3): 331-337. DOI:  10.18287/2412-6179-2016-40-3-331-337.
 
  - Khonina SN,  Volotovsky SG. Fracxicon – diffractive optical element with conical focal  domain [In Russian]. Computer Optics 2009; 33(4): 401-411.
 
  - Khonina SN,  Ustinov AV, Volotovsky SG. Fractional axicon  as a new type of diffractive optical element with conical focal region.  Precision Instrument and Mechanology 2013; 2(4): 132-143.
 
  - Panagiotopoulos  P, Papazoglou DG, Couairon A, Tzortzakis S. Sharply autofocused ring-Airy beams  transforming into non-linear intense light bullets. Nat Commun 2013; 4: 2622.  DOI: 10.1038/ncomms3622.
 
  - Jiang Y,  Zhu X, Yu W, Shao H, Zheng W, Lu X. Propagation characteristics of the modified  circular Airy beam. Optics Express 2015; 23(23): 29834-29841. DOI: 10.1364/OE.23.029834.
 
  - Chremmos I, Efremidis NK, Christodoulides DN. Pre-engineered abruptly  autofocusing beams. Optics Letters 2011; 36(10): 1890-1892. DOI:  10.1364/OL.36.001890.
 
  -   Kharitonov SI, Kazanskiy  NL, Doskolovich LL, Strelkov YS. Modeling the reflection of the electromagnetic  waves at a diffraction grating generated on a curved surface. Computer Optics  2016; 40(2): 194-202. DOI: 10.18287/2412-6179-2016-40-2-194-202.
  
 
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20