Calculation of the spectral range of a focusing HOE with the corrected third-order spherical aberration
Yu.Ts. Batomunkuev, A.A. Dianova

 

Optics and Optical Technologies Institute Siberian State University Geosystems and Technologies

Full text of article: Russian language.

 PDF

Abstract:
We discuss the results of calculating the spectral range boundaries for given diffraction orders of a thin focusing holographic optical element (HOE) with the corrected third-order spherical aberration. The variations of the spectral range boundaries are realized by varying the HOE characteristics such as shrinkage, diffraction order, recording wavelength, and the magnification factor at the recording wavelength.

Keywords:
holographic optical element (HOE), spherical aberration, spectral range.

Citation:
Batomunkuev YuTs, Dianova AA. Calculation of the spectral range of a focusing HOE with the corrected third-order spherical aberration. Computer Optics 2017; 41(2): 192-201. DOI: 10.18287/2412-6179-2017-41-2-192-201.

References:

  1. Meier RW. Magnification and third-order aberration in holography. JOSA 1965; 55(8): 987-992. DOI: 10.1364/JOSA.55.000987.
  2. Champagne EB. Nonparaxial imaging, magnification and aberration properties in holography. JOSA 1967; 57(1): 51-55. DOI: 10.1364/JOSA.57.000051.
  3. Gan МА. Theory and methods of calculation of hologram and kinoform optical elements [In Russian]. Lеningrad: “GOI” Publisher; 1984.
  4. Bobrov ST, Greisukh GI, Turkevich YG. The diffraction optics elements and systems [In Russian]. Lеningrad: Mechanical Engineering; 1986.
  5. Bujnov GN, Mustafin KC. Compensation spherical aberration holographic lens at the short-wavelength shift of the emission reducing [In Russian]. Optics and Spectroscopy 1976; 41: 157.
  6. Greisukh GI, Stepanov SA. Holographic formation of the band structure of diffractive lenses with desired optical properties. In Book: Denisuk YuN, ed. Holographic optical elements and systems [In Russian]. Saint-Petersburg: “Nauka” Publisher; 1994: 98-103.
  7. Doskolovich LL, Kazanskiy NL, Khonina SN, Skidanov RV, Heikkilä N, Siitonen S, Turunen J. Design and investigation of color separation diffraction gratings. Applied Optics 2007; 46(15); 2825-2830. DOI: 10.1364/AO.46.002825.
  8. Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Wiley & Sons, Inc; 2002.
  9. Mustafin KS. Holographic optics and perspectives of its application [in Russian]. In book: Materials of the fifth holography school. Leningrad: “LIYAF” Publisher; 1973.
  10. Park Y, Koch L, Song K, Park S, King G, Choi S. Miniaturization of a Fresnel spectrometer. Journal of Optics A: Pure and Applied Optics; 2008: 10(9): 095301. DOI: 10.1088/1464-4258/10/9/095301.
  11. Shoydin SA, Yamshirov YI, Batomunkuev YuTs, Skivko GP. The laser rangefinder sight [In Russian]. Pat RF of Invent N 2088883 of August 27, 1997.
  12. Yuzhik IB, Malinin VV, Popov GN. Devices detection and suppression of the optical and electro-optical means [In Russian]. Materials of IV International scientific congress and exhibition "GEO-Siberia 2008" 2008; 4(1): 148-152.
  13. Batomunkuev YuTs, Meshcheryakov NA. Holographic level [In Russian]. Vestnik of SGGA 2005; 10: 177-180.
  14. Koreshev SN, Shevtsov MK. Optical systems of holographic collimator sights. Journal of Optical Technology 2015; 82(9): 592-597. DOI: 10.1364/JOT.82.000592.
  15. Batomunkuev YuTs, Dianova AA, Maganakova TV, Reichert VA, Haritoshin NA. Computer synthesis of discrete diffractive optical elements [In Russian]. Polzunovsky vestnik 2012; 3-2: 139-142.
  16. Morozov AV, Putilin AN, Kopenkin SS, Borodin YP, Druzhin VV, Dubynin SE, Dubinin GB. 3D holographic printer: fast printing approach. Optics Express 2014; 22(3): 2193-2206. DOI: 10.1364/OE.22.002193.
  17. Batomunkuev YuTs, Meshcheryakov NA. Calculation of the scheme of recording a volume axial holographic optical element in the infrared region of the spectrum. Russian physics journal 2010; 53(7): 680-686. DOI: 10.1007/s11182-010-9473-3.
  18. Dyachenko PN, Karpeev SV, Fesik EV, Miklyaev YuV, Pavelyev VS, Malchikov GD. The three-dimensional photonic crystals coated by gold nanoparticles. OpticsCommunications 2011; 284(3); 885-888. DOI: 10.1016/J.OPTCOM.2010.10.006.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20