The use of metamaterials to control the speed of light propagation in optical structures
A.G. Glushchenko, E.P. Glushchenko

 

Volga State University of Telecommunications and Informatics

Full text of article: Russian language.

 PDF

Abstract:
In the article we show in the geometric approximation the possibility of slowing down the light propagating along the axis of an optical waveguide structure by using metamaterials as optical structure elements. We study features of light propagation using a plane model of a fiber optic line whose cladding material has a negative refractive index. It is shown that by introducing a metamaterial, the propagation of light waves in the structure can be changed so that the light is decelerated along the structure axis to the extent that it stops, before starting to propagate in the opposite direction. We derive relationships for calculating the delay time as a function of geometrical and optical parameters of the structure, relationships for calculating critical parameters, and conditions for stopping the lighth.

Keywords:
optical waveguide, metamaterial, delay time.

Citation:
Gluschenko AG. Glushchenko EP. The use of metamaterials to control the speed of light propagation in optical structures. Computer Optics. 2017; 41(2): 202-207. DOI: 10.18287/2412-6179-2017-41-2-202-207.

References:

  1. Heinze G, Hubrich C, Halfmann T. Stopped Light and Image Storage by Electromagnetically Induced Transparency up to the Regime of One Minute. Phys Rev Lett 2013; 111(3): 033601. DOI: 10.1103/PhysRevLett.111.033601.
  2. Rui Y. Realization of "Trapped Rainbow" in 1D slab waveguide with Surface Dispersion Engineering. arXiv:1410.8196 2014; 1(10): 1-11. DOI: 10.1364/OE.23.006326.
  3. Musorin AI, Sharipova MI, Dolgova TV, Inoue M, Fedyanin AA. Ultrafast Faraday Rotation of Slow Light. Phys Rev Applied 2016; 6(2): 024012. DOI: 10.1103/PhysRevApplied.6.024012.
  4. Hau LV, Harris SE, Dutton Z, Behroozi CH. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 1999; 397: 594-598. DOI: 10.1038/1756.
  5. Wu P, Rao DV. Controllable Snail-Paced Light in Biological Bacteriorhodopsin Thin Film. Phys Rev Lett 2005; 95(25): 253601. DOI: 10.1103/PhysRevLett.95.253601.
  6. Alexandrov EB, Zapasskii VS. Chasing "slow light". Phys Usp 2006; 49(10): 1067-1075. DOI: 10.1070/ PU2006v049n10ABEH006056.
  7. Matsko AB Strekalov DV, Maleki L. On the dynamic range of optical delay lines based on coherent atomic media. Opt Express 2005; 13(6): 2210-2223. DOI: 10.1364/OPEX.13.002210.
  8. Mayer VV. Total internal reflection of light [In Russian]. Moscow: “Fizmatlit” Publisher; 2007.
  9. Soifer VA, ed. Diffraction nanophotonics [in Russian]. Moscow: “Fizmatlit” Publisher; 2011. ISBN: 978-5-9221-1237-6.
  10. Bliokh KY, Aiello A. Goos–Hänchen and Imbert–Fedorov beam shifts: An overview. J Opt 2013: 15(1): 014001. DOI: 10.1088/2040-8978/15/1/014001.
  11. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D, Bartal G, Zhang X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008; 455: 376-379. DOI: 10.1038/nature07247.
  12. Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ε and μ / V. G. Veselago // Sov Phys Usp 1968: 10: 509-514.  DOI: 10.1070/PU1968v010n04ABEH003699.
  13. Glushchenko AG, Zakharchenko EP. Stimulated transparency exorbitant structures with active environment [In Russian]. LAP Lambert Academic Publishing; 2011. ISBN: 978-3-8443-5745-5.
  14. Egorov AV, Kazanskiy NL, Serafimovich PG. Using coupled photonic crystal cavities for increasing of sensor sensitivity. Computer Оptics 2015; 39(2): 158-162. DOI:10.18287/0134-2452-2015-39-2-158-162.
  15. Nalimov AG, Kotlyar VV. Sharp focusing of light using a planar gradient microlens. Computer Optics 2016; 40(2): 135-140. DOI: 10.18287/2412-6179-2016-40-2-135-140.
  16. Kharitonov SI, Doskolovich LL, Kazanskiy NL. Solving the inverse problem of focusing laser radiation in a plane region using geometrical optics. Computer Optics 2016; 40(4): 439-450. DOI: 10.18287/ 2412-6179-2016-40-4-439-450.
  17. Golovastiko NV, Bykov DA, Doskolovich LL, Soifer VA. Resonant diffraction gratings for differentiation of optical signals in reflection and transmission. Computer Optics 2013; 37(2): 138-145.
  18. Zavershinsky D.I., Molevich N.E. Parametrical interaction of codirectional magnetoacoustic and alfven waves at magnetoacoustic instability. Computer Optics 2013; 37(4): 410-414.
  19. Kirby EI, Hamm JM, Tsakmakidis KL, Hess O. FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides. J Opt A: Pure Appl Opt 2009; 11(11): 114027. DOI: 10.1109/ ICMMT.2008.4540775.
  20. Jiang T, Zhao J, Feng Y. Stopping light by an air waveguide with anisotropic metamaterial cladding. Opt Express 2009; 17(1): 170-177. DOI: 10.1364/OE.17.000170.
  21. Jiang T, Zhao J, Feng Y. Light trapper by tapered air core in anisotropic metamaterial. International Workshop on Metamaterials 2008: 363-365. DOI: 10.1109/ME­TA.2008.4723615.
  22. Vendik IB, Vendik OG. Metamaterials and their application in microwaves: A Review. Technical Physics 2013; 83(1): 1-24.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20