Single-layer kinoforms for cameras and video cameras of mobile communication devices
G.I. Greisukh, E.G. Ezhov, S.V. Kazin, S.A. Stepanov

 

Penza State University of Architecture and Construction

Full text of article: Russian language.

 PDF

Abstract:
Conditions that guarantee the absence of a visually observed halo in the image formed by the camera of a mobile communication device containing a diffractive lens with a single-layer sawtooth phase microrelief are corrected. The feasibility and effectiveness of using the diffractive lens with a single-layer microstructure, which does not lead to the emergence of a visually observable halo, are demonstrated by the example of a plastic objective lens for the smartphone.

Keywords:
diffraction efficiency, relief-phase diffraction microstructure, halo, diffractive lens.

Citation:
Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Single-layer kinoforms for cameras and video cameras of mobile communication devices. Computer Optics 2017; 41(2): 218-226. DOI: 10.18287/0134-2452-2017-41-2- 218-226.

References:

  1. Greisukh GI, Ezhov EG, Kazin SV, Sidyakina ZA, Stepanov SA. Visual assessment of the influence of adverse diffraction orders on the quality of image formed by the refractive-diffractive optical system. Computer Optics 2014; 38(3): 418-424.
  2. Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Effect of side diffraction orders on imaging quality produced by a refractive/diffractive objective in a digital camera. Journal of Optical Technology 2016; 83(3): 159-162. DOI: 10.1364/JOT.83.000159.
  3. Edmund Optics: plastic hybrid aspheric lenses. Source: <http://www.edmundoptics.com/optics/optical-lenses/#f=ca­tegories_s|*C311I*>.
  4. Flores A, Wang MR, Yang JJ. Achromatic hybrid refractive–diffractive lens with extended depth of focus. Appl Opt 2004; 43(30): 5618-5630. DOI: 10.1364/AO.43.005618.
  5. Rostalski H-J. Use of diffractive lenses in lithographic projection lenses. IODC 2006 Technical Digest 2006: WD4. DOI: 10.1364/IODC.2006.WD4.
  6. Dutta U, Hazra L. Monochromatic primary aberrations of a diffractive lens on a finite substrate. Appl Opt 2010; 49(18): 3613-3621. DOI: 10.1364/AO.49.003613.
  7. Greisukh GI, Ezhov EG, Levin IA, Kalashnikov AV, Stepanov SA. Modeling and investigation superachroma­tization refractive and refractive-diffractive optical systems. [In Russian]. Computer Optics 2012; 36(3): 395-404.
  8. Peng Y,Fu Q, Amata H, Su Sh, Heide F, Heidrich W. Computational imaging using lightweight diffractive-refractive optics. Optics Express 2015; 23(24): 31393-31407. DOI: 10.1364/OE.23.031393.
  9. Greisukh GI, Ezhov EG, Levin IA, Stepanov SA. Design of achromatic and apochromatic plastic microobjectives. Appl Opt 2010; 49(23): 4379-4384. DOI: 10.1364/AO.49.004379.
  10. Greisukh GI, Ezhov EG, Kalashnikov AV, Stepanov SA. Diffractive–refractive correction units for plastic compact zoom lenses. Appl Opt 2012; 51(20): 4597-4604. DOI: 10.1364/AO.51.004597.
  11. Greisukh GI, Ezhov EG, Sidyakina ZA, Stepanov SA. Design of plastic diffractive–refractive compact zoom lenses for visible–near-IR spectrum. Appl Opt 2013; 52(23): 5843-5850. DOI: 10.1364/AO.52.005843.
  12. Koronkevich VP, Palchikova IG. Modern zone plates [In Russian]. Optoelectronics, Instrumentation and Data Processing 1992; 1: 86-100.
  13. Soifer VA, ed. Diffractive Computer Optics [In Russian]. Moscow: "Fizmatlit" Publisher; 2007. ISBN: 5-9221-0845-4.
  14. Greisukh GI, Bezus EA, Bykov DA, Ezhov EG, Stepanov SA. Suppression of the spectral selectivity of two-layer relief-phase diffraction structures. Optics and Spectroscopy 2009; 106(4): 621-626. DOI: 10.1134/S0030400X09040249.
  15. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA, Usievich BA.Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth. Optics Communication 2015; 338: 54-57. DOI: 10.1016/j.optcom.2014.10.037.
  16. Buralli DA, Morris GM, Rogers JR. Optical performance of holographic kinoforms. Appl Opt 1989; 28(5): 976-983. DOI: 10.1364/AO.28.000976.
  17. Vershovsky A. Who needs this film? Source: <http://photo-element.ru/analysis/film/film.html-December-2016>.
  18. Reshidko D, Sasian J. Optical analysis of miniature lenses with curved imaging surfaces. Appl Opt 2015; 54(28): E216-E223. DOI: 10.1364/AO.54.00E216.
  19. Tsai T-H, Huang H-H. Image capturing lens assembly. Patent US 20140300975 A1. filed of April 12, 2013, published of October 9, 2014.
  20. Greisukh GI, Ezhov EG, Stepanov SA. Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems. Appl Opt 2006; 45(24): 6137-6141. DOI: 10.1364/AO.45.006137.
  21. Greisukh GI, Ezhov EG, Stepanov SA. Taking diffractive efficiency into account in the design of refractive/diffrac­tive optical systems. J Opt Technol 2016; 83(3): 163-167. DOI: 10.1364/JOT.83.000163.
  22. ZEMAX: software for optical system design. Source: <http://www.radiantzemax.com-October-2016>.
  23. Color glass spectral transmittance. Source: <http://www.elektrosteklo.ru/Color_Glass_Spectral_Transmit­tance.pdf>.
  24. Margulis D. Photoshop LAB Color: The Conyon conundrum and other adventures in the most powerful colorspace. Berkeley, CA: Peachpit Press; 2005. ISBN: 978-0-321-35678-9.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20