Counterfeit bill detection by image analysis for smartphones
Y.B. Blokhinov, A.V. Bondarenko, V.A. Gorbachev, S.Y. Zheltov, Y.O. Rakutin
State Research Institute of Aviation Systems
Full text of article: Russian language.
PDF
Abstract:
A method for counterfeit bill detection based on a digital image for mass-production smartphones is developed. The method under consideration does not require new protective elements to be designed and introduced into the print and is based on the use of digital image analysis and recognition methods, allowing one to carry out an automatic search and verification of known protective elements of the print. The peculiarity of the proposed approach is associated with constructing a feature vector for each type of samples and their subsequent classification using machine learning based on a training sample. The method is realized as a program application for smartphones, performing the automatic detection of an object in the frame, shooting the camera-captured object, rejection of unsuitable images, determination of a face-value and type of the banknote, and finally, verification of the authenticity.
Keywords:
digital image processing, image analysis, pattern recognition, banknote, counterfeit, smartphone, identification, authentication, feature vector,learning classification.
Citation:
Blokhinov YB, Bondarenko AV, Gorbachev VA, Zheltov SY, Rakutin YO. Сounterfeit bill detection by image analysis for smartphones. Computer Optics 2017; 41(2): 237-244. DOI: 10.18287/2412-6179-2017-41-2-237-244.
References:
- Lohweg V, Hoffmann JL, Dörksen H, Hildebrand R, Gillich E, Hofmann J, Schaede J. Banknote authentication with mobile devices. Proc SPIE 2013; 8665: 866507. DOI: 10.1117/12.2001444.
- Lohweg V, Gillich E, Schaede J. Authentication of security documents, in particular of banknotes. Patent EP 2000992 А1 of December 10, 2008, bulletin 2008/50.
- Lohweg V. Renaissance of intaglio. Keesing Journal of Documents & Identity 2010; 33: 35-41.
- Lohweg V, Schaede J. Document production and verification by optimization of feature platform exploitation. Optical Document Security – The Conference on Optical Security and Counterfeit Detection II 2010: 1-15.
- Lohweg V, Dörksen H, Gillich E, Hildebrand R, Hoffmann JL, Schaede J. Mobile devices for banknote authentication – is it possible? Optical Document Security – The Conference on Optical Security and Counterfeit Detection III 2012: 1-15.
- Yang C-N, Chen J-R, Chiu C-Y, Wu G-C, Wu C-C. Enhancing privacy and security in RFID-enabled banknotes. IEEE International Symposium on Parallel and Distributed Processing with Applications 2009: 439-444. DOI: 10.1109/ISPA.2009.77.
- Omatu S, Yoshioka M, Kosaka Y. Bank note classification using neural networks. IEEE Conference on Emerging Technologies and Factory Automation 2007: 413-417. DOI: 10.1109/EFTA.2007.4416797.
- Blokhinov YB, Gorbachev VA, Rakutin YO, Volkov VV. Identification of samples of the protected printed materials with use of the smartphone. Vestnik Komp’iuternykh i Informatsionnykh Tekhnologii 2016; 3: 11-17. DOI: 10.14489/vkit.2016.03.pp.011-017.
- Blokhinov YB, Gorbachev VA. The authenticity analysis of samples of the protected printed materials with use of the smartphone. Vestnik komp’iuternykh informatsionnykh tekhnologii 2016; 4: 23-30. DOI: 10.14489/vkit.2016.04.pp.023-029.
- Viola P, Jones MJ. Rapid object detection using a boosted cascade of simple features. Proc CVPR 2001; 1: 511-518. DOI: 10.1109/CVPR.2001. 990517.
- Papageorgiou CP, Oren M, Poggio T. A general framework for object detection. ICCV 1998: 555-562. DOI: 10.1109/ICCV.1998.710772.
- Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi P, ed. Computational Learning Theory. EuroCOLT 1995. Berlin, Heidelberg: Springer; 1995: 23-37. DOI: 10.1007/3-540-59119-2_166.
- Friedman JH. Greedy function approximation: A gradient boosting machine. The Annals of Statistics 2001; 29(5): 1189-1232. DOI: 10.1214/aos/1013203451.
- Gonsales R, Woods R. Digital image processing. 3rd ed. Upper Saddle River, NJ: Pearson Education, Inc., 2008. ISBN: 978-0-13-168728-8.
- Shapiro LG, Stockman JC. Computer vision. Seattle, Washington: Pearson; 2001. ISBN: 978-0-13-030796-5.
- Harris C, Stephens MA. Combined corner and edge detector. Proc Alvey Vision Conference 1988: 147-151. DOI: 10.5244/C.2.23.
- Molina LC, Belanche L, Nebot A. Feature selection algorithms: A survey and experimental evaluation. Proc ICDM 2002: 306-313. DOI: 10.1109/ICDM.2002.1183917.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20