Minimizing the entropy of post-interpolation residuals for image compression based on hierarchical grid interpolation
M.V. Gashnikov
Samara National Research University
Full text of article: Russian language.
PDF
Abstract:
An adaptive parameterized interpolator for image compression based on hierarchical grid interpolation is developed and investigated. For optimizing the interpolator parameters an approach is proposed based on the minimization of the entropy of the quantized post-interpolation residuals, which is used as an estimate of the volume of compressed data. A recursive procedure for calculating the parameters of the developed interpolator is proposed, and theoretical estimates of its computational complexity are calculated. As part of a hierarchical image compression method, the developed interpolator is experimentally investigated, as well as making its comparison with averaging interpolators and an adaptive interpolator based on optimizing the sum of the absolute values of the interpolation errors. The developed interpolator is shown to have an advantage over the prototypes in terms of the compressed data size for various compression errors.
Keywords:
hierarchical grid interpolation, compression, quantization, compression ratio, maximum deviation, computation complexity.
Citation:
Gashnikov MV. Minimizing the entropy of post-interpolation residuals for image compression based on hierarchical grid interpolation. Computer Optics 2017; 41(2): 266-275. DOI: 10.18287/2412-6179-2017-41-2-266-275.
References:
- Chang C. Hyperspectral Data Processing: Algorithm Design and Analysis. Hoboken, NJ: Wiley Press; 2013. ISBN: 978-0-471-69056-6.
- Borengasser M, Hungate W, Watkins R. Hyperspectral remote sensing: Principles and applications. Boca Raton, London, New York: CRC Press; 2004. ISBN: 978-1566706544.
- Chang C-I. Hyperspectral imaging: Techniques for spectral detection and classification. Springer; 2003. ISBN: 978-0306474835.
- Salomon D. Data Compression. The Complete Reference. 4th ed. Springer-Verlag, 2007. ISBN: 978-1846286025.
- Sayood K. Introduction to Data Compression. 4th ed. Morgan Kaufmann; 2012. ISBN: 978-0124157965.
- Vatolin D, Ratushnyak A, Smirnov M, Yukin V. Data compression methods. Archive program architecture, image and video compression [In Russian]. Moscow: "Dialog-MIFI" Publisher; 2002. ISBN: 5-86404-170-X.
- Woods E, Gonzalez R. Digital Image Processing. 3th ed. Prentice Hall; 2007. ISBN: 978-0131687288.
- Pratt W. Digital image processing. 4th ed. Wiley; 2007. ISBN: 978-0471767770.
- Lidovski V. Information theory: Tutorial [In Russian]. Moscow: "Kompania Sputnik+" Publisher; 2004. ISBN 5-93406-661-7.
- Woon W, Ho A, Yu T, Tam S, Tan S, Yap L. Achieving high data compression of self-similar satellite images using fractal. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2000; 609-611. DOI: 10.1109/IGARSS.2000.861646.
- Gupta V, Sharma V, Kumar A. Enhanced image compression using wavelets. International Journal of Research in Engineering and Science (IJRES) 2014; 2(5): 55-62.
- Li J. Image Compression: The Mathematics of JPEG-2000. MSRI Publications 2003; 46: 185-221.
- Plonka G, Tasche M. Fast and numerically stable algorithms for discrete cosine transforms. Linear Algebra and its Applications 2005; 394(1): 309-345. DOI: 10.1016/j.laa.2004.07.015.
- Wallace G. The JPEG Still Picture Compression Standard. Communications of the ACM 1991; 34(4): 30-44. DOI: 10.1145/103085.103089.
- Ebrahimi F, Chamik M, Winkler S. JPEG vs. JPEG2000: An objective comparison of image encoding quality. Proceedings of SPIE 2004; 5558: 300-308. DOI: 10.1117/12.564835.
- Gashnikov MV, Glumov NI, Sergeyev VV. Compression method for real-time systems of remote sensing. Proceedings of 15th International Conference on Pattern Recognition 2000; 3: 232-235. DOI: 10.1109/ICPR.2000.903527.
- Gashnikov MV, Glumov NI. Hierarchical GRID interpolation under hyperspectral images compression. Optical Memory and Neural Networks 2014; 23(4): 246-253. DOI: 10.3103/S1060992X14040031.
- Lin S, Costello D. Error control coding: Fundamentals and applications. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, Inc.; 2004. ISBN: 978-0130426727.
- Efimov VM, Kolesnikov AN. Effectiveness estimation of the hierarchical and line-by-line lossless compression algorithms [In Russian]. Proceedings of the III conference "Pattern recognition and image analisys" 1997; 1: 157-161.
- Gashnikov MV. Interpolation for hyperspectral images compression. CEUR Workshop Proceedings 2016; 1638: 327-333. DOI: 10.18287/1613-0073-2016-1638-327-333.
- Gashnikov MV, Glumov NI, Sergeev VV. Adaptive interpolation algorithm for hierarchical image compression [In Russian]. Computer optics 2012; 23: 89-93.
- MacKay DJ. Information theory, inference, and learning algorithms. Cambridge University Press; 2003. ISBN: 978-0521642989.
- Gashnikov MV, Glumov NI. Hyperspectral images repository using a hierarchical compression. Posters Proceedings of 23rd International Conference on Computer Graphics, Visualization and Computer Vision (WSCG) 2015; 1-4.
- Gashnikov MV, Glumov NI. Development and investigation of a hierarchical compression algorithm for storing hyperspectral images. Optical Memory and Neural Networks 2016; 25(3): 168-179. DOI: 10.3103/S1060992X16030024.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20