Terahertz pulse time-domain holography in dispersive media
N.S. Balbekin, M.S. Kulya, N.V. Petrov

 

ITMO University, Saint-Petersburg, Russia

Full text of article: Russian language.

 PDF

Abstract:
We propose a mathematical model for holographic relief reconstruction of phase objects  based on the analysis of diffraction patterns of pulsed terahertz radiation, recorded in a dispersive medium. Numerical simulation shows the influence of the dispersion medium on the process of phase and relief reconstruction: disregard of the dispersion due to the refractive index of the medium where terahertz radiation propagates causes an error in the reconstructed image. The normalized standard deviation amounts to 0.3 when the wavefront propagation distance is 10 mm, increasing to 0.45 at a distance of 70 mm.

Keywords:
digital holography, terahertz optics, imaging, dispersive medium.

Citation:
Balbekin NS, Kulya MS, Petrov NV. Terahertz pulse time-domain holography in dispersive media. Computer Optics 2017; 41(3): 348-355. DOI: 10.18287/2412-6179-2017-41-3-348-355.

References:

  1. Plusquellic DF, Siegrist K, Heilweil EJ, Esenturk O. Applications of terahertz spectroscopy in biosystems. Chem Phys Chem 2007; 8(17): 2412-2431. DOI: 10.1002/cphc.200700332.
  2. Tsurkan MV, Balbekin NS, Sobakinskaya EA, Panin AN, Vaks VL. Terahertz spectroscopy of DNA. Optics and Spectroscopy 2013; 114(6): 894-898. DOI: 10.1134/S0030400X13060222.
  3. Smirnov SV, Grachev YaV, Tsypkin AN, Bespalov VG. Experimental studies of the possibilities of diagnosing caries in the solid tissues of a tooth by means of terahertz radiation. J Opt Technol 2014; 81(8): 464-467. DOI: 10.1364/JOT.81.000464.
  4. Kemp MC. Detecting hidden objects: Security imaging using millimetre-waves and terahertz. AVSS 2007: 7-9. DOI: 10.1109/AVSS.2007.4425277.
  5. Zeitler JA, Taday PF, Newnham DA, Pepper M, Gordon KC, Rades T. Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting-a review. J Pharm Pharmacol 2007; 59(2): 209-223. DOI: 10.1211/jpp.59.2.0008.
  6. Balbekin NS, Novoselov EV, Pavlov PV, Bespalov VG, Petrov NV. Nondestructive monitoring of aircraft composites using terahertz radiation. Proc SPIE 2015; 9448: 94482D. DOI: 10.1117/12.2180021.
  7. Zhang XC, Xu J. Introduction to THz wave photonics. New York: Springer; 2010. ISBN: 978-1-4419-0977-0.
  8. Lee YS. Principles of Terahertz Science and Technology. New York: Springer; 2009. ISBN: 978-0-387-09539-4.
  9. Hu BB, Nuss MC. Imaging with terahertz waves. Opt Lett 1995; 20(16): 1716-1718. DOI: 10.1364/OL.20.001716.
  10. Mittleman DM, Jacobsen RH, Nuss MC. T-Ray Imaging. IEEE J Sel Top Quantum Electron 1996; 2(3): 679-692. DOI: 10.1109/2944.571768.
  11. Mittleman DM, Gupta M, Neelamani R, Baraniuk RG, Rudd JV, Koch M. Recent advances in terahertz imaging. Appl Phys B 1999; 68(6): 1085-1094. DOI: 10.1007/s003400050750.
  12. Ahi K, Anwar M. Advanced terahertz techniques for quality control and counterfeit detection. Proc SPIE 2016; 9856: 98560G. DOI: 10.1117/12.2228684.
  13. Ahi K, Anwar M. Modeling of terahertz images based on x-ray images: a novel approach for verification of terahertz images and identification of objects with fine details beyond terahertz resolution. Proc SPIE 2016; 9856: 985610. DOI: 10.1117/12.2228685.
  14. Petrov NV, Kulya MS, Tcypkin AN, Bespalov VG, Gorodetsky AA. Application of terahertz pulse time-domain holography for phase imaging. IEEE Trans Terahertz Sci Technol 2016; 6(3): 464-472. DOI: 10.1109/TTHZ.2016.2530938.
  15. Zhang L, Zhang Y, Zhang C, Zhao Y, Liu X. Terahertz multiwavelength phase imaging without 2π ambiguity. Opt Lett 2006; 31(24): 3668-3670. DOI: 10.1364/OL.31.003668.
  16. Zhang L, Zhong H, Zhang Y, Karpowicz N, Zhang C, Zhao Y, Zhang XC. Terahertz wave focal-plane multiwavelength phase imaging. JOSA A 2009; 26(5): 1187-1190. DOI: 10.1364/JOSAA.26.001187.
  17. Zhang Y, Zhou W, Wang X, Cui Y, Sun W. Terahertz digital holography. Strain 2008; 44(5): 380-385. DOI: DOI: 10.1111/j.1475-1305.2008.00433.x.
  18. Gorodetsky AA, Bespalov VG. THz pulse time-domain holography. Proc SPIE 2010; 7601: 760107. DOI: 10.1117/12.843249.
  19. Bespalov V, Gorodetsky A. Modeling of referenceless holographic recording and reconstruction of images by means of pulsed terahertz radiation. J Opt Tech 2007; 74(11): 745-749. DOI: 10.1364/JOT.74.000745.
  20. Semenova VA, Kulya MS, Petrov NV, Grachev YV, Tsypkin AN, Putilin SE, Bespalov VG. Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate. IRMMW-THz 2016: 1-2.
  21. Naftaly M, Cain MG, Lepadatu S, Buchacher T, Allam J. Dielectric constants of bulk ferroelectric PZT measured by terahertz time-domain spectroscopy. Adv Appl Ceram 2016; 115(5): 260-263. DOI: 10.1080/17436753.2015.1130199.
  22. Shi L, Shumyatsky P, Rodríguez-Contreras A, Alfano R. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease. J Biomed Opt 2016; 21(1): 015014. DOI: 10.1117/1.JBO.21.1.015014.
  23. Lee SH, Koo MJ, Lee KH, Jazbinsek M, Kang BJ, Rotermund F, Kwon OP. Quinolinium-based organic electro-optic crystals: Crystal characteristics in solvent mixtures and optical properties in the terahertz range. Mater Chem Phys 2016; 169: 62-70. DOI: 10.1016/j.matchem­phys.2015.11.028.
  24. Chamorro-Posada P, Vázquez-Cabo J, Rubiños-López Ó, Martín-Gil J, Hernández-Navarro S, Martín-Ramos P, Sánchez-Arévalo FM, Tamashausky AV, Merino-Sánchez C, Dante RC. THz TDS study of several sp2 carbon materials: Graphite, needle coke and graphene oxides. Carbon 2016; 98: 484-490. DOI: 10.1016/j.carbon.2015.11.020.
  25. Balbekin NS, Kulya MS, Rogov PY, Petrov NV. The modeling peculiarities of diffractive propagation of the broadband terahertz two-dimensional field. Physics Proc 2015; 73: 49-53. DOI: 10.1016/j.phpro.2015.09.120.
  26. Poon TC, Banerjee PP. Contemporary optical image processing with MATLAB. Amsterdam, London, New York, Oxford, Paris, Shannon, Tokyo: Elsevier Science Ltd.; 2001. ISBN: 978-0-08-043788-5.
  27. Grebenyuk AA; Ryabukho VP. Numerical focusing in digital holographic microscopy with partially spatially coherent illumination in transmission Proc SPIE 2014; 9031: 903119. DOI: 10.1117/12.2052837.
  28. Dubois A. Handbook of full-field optical coherence microscopy: Technology and applications. Singapure: Pan Stanford Publishing Pte. Ltd.; 2016. ISBN: 978-981-4669-16-0.
  29. Labiau S, David G, Gigan S, Boccara AC. Defocus test and defocus correction in full-field optical coherence tomography. Opt Lett 2009; 34(10): 1576-1578. DOI: 10.1364/OL.34.001576.
  30. Nalegaev SS, Petrov NV. Numerical inversion of wavefront propagation dynamics with spatial nonlinearity. Russ J Phys Chem B+ 2015; 9(4): 555-557. DOI: 10.1134/S1990793115040272.
  31. Nalegaev SS, Petrov NV, Bespalov VG. Numerical reconstruction of wave field spatial distributions at the output and input planes of nonlinear medium with use of digital holography. JPCS 2014; 536(1): 012025. DOI: 10.1088/1742-6596/536/1/012025.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20