Processing of thermal mirror signals under continuous wave excitation
A.V. Kalenskii, A.A. Zvekov, D.R. Nurmuhametov, O.N. Bulgakova

 

Kemerovo State University, Kemerovo, Russia,
Federal Research Center of Coal and Coal Chemistry SB RAS (Institute of coal chemistry and material science), Kemerovo, Russia

Full text of article: Russian language.

 PDF

Abstract:
The main features of the photothermal mirror signals arising under the continuous wave excitation were analyzed in terms of a model that takes account of thermal, mechanical, and diffraction effects. Formulae to describe the initial slope and stationary value of the signal were derived and compared with the numerical simulation results. We suggested an approach to processing  the thermal mirror signals  based on exploiting the initial slope and stationary value. The method was verified using numerical simulation and experimental results. We compared the method performance with the conventional approach using thermal mirror signals excited in the luminescent glasses. It was shown that the developed technique has an essentially lower computational cost, while offering a comparable level of accuracy.

Keywords:
photothermal spectroscopy, photothermal effects, thermal mirror method, phase shift, experimental results processing.

Citation:
Kalenskii AV, Zvekov AA, Nurmuhametov DR, Bulgakova ON. Processing of thermal mirror signals under continuous wave excitation. Computer Optics 2017; 41(3): 369-376. DOI: 10.18287/2412-6179-2017-41-3-369-376.

References:

  1. Bialkowski SE. Photothermal Spectroscopy Methods for Chemical Analysis. New York: John Wiley & Sons, Inc.; 1996. ISBN 978-0-471-57467-5.
  2. Gusev VE, Karabutov AA. Laser optoacoustics. New York: American Institute of Physics; 1992. ISBN: 978-1-563-96036-9.
  3. Rodrigues TP, Zanuto VS, Cruz RA, Catunda T, Baesso ML, Astrath NGC, Malacarne LC. Discriminating the role of sample length in thermal lensing of solids. Opt Lett 2014; 39(13): 4013-4016. DOI: 10.1364/OL.39.004013.
  4. Liu M, Franko M. Thermal Lens Spectrometry: Still a Technique on the Horizon? Int J Thermophys 2016; 37(7): 67. DOI: 10.1007/s10765-016-2072-y.
  5. Aduev BP, Nurmukhametov DR, Furega RI et al. Light absorption by formulations based on PETN and aluminum nanoparticles during pulsed laser irradiation. Russian Journal of Physical Chemistry B 2014; 8(6): 852-855. DOI: 10.1134/S1990793114110128.
  6. Aduev BP, Nurmukhametov DR, Zvekov AA, Nikitin AP, Kalenskii AV. Laser initiation of PETN-based composites with additives of ultrafine aluminium particles. Combustion, Explosion, and Shock Waves 2016; 52(6): 713-718. DOI: 10.1134/S0010508216060113.
  7. Capeloto OA, Lukasievicz GVB, Zanuto VS, Herculano LS, Souza Filho NE, Novatski A, Malacarne LC, Bialkowski SE, Baesso ML, Astrath NGC. Pulsed photothermal mirror technique: characterization of opaque materials. Appl Opt 2014; 53(33): 7985-7991. DOI: 10.1364/AO.53.007985.
  8. Lukasievicz GVB, Astrath NGC, Malacarne LC, Herculano LS, Zanuto VS, Baesso ML, Bialkowski SE. Pulsed-laser time-resolved thermal mirror technique in low-absorbance homogeneous linear elastic materials. Appl Spectr 2013; 67(10): 1111-1116. DOI: 10.1366/13-07068.
  9. Herculano LS, Lukasievicz GVB, Sehn E, Caetano W, Pellosi DS, Hioka N, Astrath NGC, Malacarne LC. Photodegradation in micellar aqueous solutions of erythrosin esters derivatives. Appl Spectr 2015; 69(7): 883-888. DOI: 10.1366/15-07865.
  10. Herculano LS, Malacarne LC, Zanuto VS, Lukasievicz GVB, Capeloto OA, Astrath NGC. Investigation of the photobleaching process of eosin Y in aqueous solution by thermal lens spectroscopy. J Phys Chem B 2013; 117(6): 1932-1937. DOI: 10.1021/jp3119296.
  11. Kumar BR, Basheer NS, Kurian A, Georg SD. Study of concentration-dependent quantum yield of Rhodamine 6G by gold nanoparticles using thermal-lens technique. Appl Phys B 2014; 115(3): 335-342. DOI: 10.1007/s00340-013-5608-x.
  12. Shokou? N, Yoose?an J. Selective determination of Sm (III) in lanthanide mixtures by thermal lens microscopy. J Industr Eng Chem 2016. 35: 153-157. DOI: 10.1016/j.jiec.2015.12.027.
  13. Sato F, Malacarne LC, Pedreira PRB, Belancon MP, Mendes RS, Baesso ML, Astrath NGC, Shen J. Time-resolved thermal mirror method: A theoretical study. J Appl Phys 2008; 104: 053520. DOI: 10.1063/1.2975997.
  14. Aduev BP, Nurmukhametov DR, Zvekov AA, Nikitin AP, Nelyubina NV, Belokurov GM, Kalenskii AV. Determining the optical properties of light-diffusing systems using a photometric sphere. Instrum Exp Tech 2015; 58(6): 765-770. DOI:10.1134/S0020441215050012.
  15. Aduev BP, Nurmukhametov NR, Kolmykov RP, Nikitin AP, Anan’eva MV, Zvekov AA, Kalenskii AV. Explosive decomposition of pentaerythritol tetranitrate pellets containing nickel nanoparticles with various radii. Russ J Phys Chem B 2016; 10(4): 621-627. DOI: 10.1134/S1990793116040187.
  16. Zvekov AA, Kalenskii AV, Aduev BP, Ananyeva MV. Calculation of the Optical Properties of Pentaerythritol Tetranitrate-Cobalt Nanoparticle Composites. J Appl Spectr 2015; 82(2): 213-220. DOI: 10.1007/s10812-015-0088-x.
  17. Petruk VG, Ivanov AP, Kvaternyuk SM, Barun VV. Spectrophotometric method for differentiation of human skin melanoma. II. Diagnostic characteristics. J Appl Spectr 2016. 83(2): 261-270. DOI: 10.1007/s10812-016-0279-0.
  18. Nel’ubina NV, Pidgirny MP, Bulgakova ON, Zvekov AA, Kalenskii AV. Peculiarities of spectral measurements of colored suspensions in thick-walled cuvettes. Computer Optics 2016; 40(4): 508-515. DOI: 10.18287/2412-6179-2016-40-4-508-515.
  19. Kalenskii AV, Zvekov AA, Nikitin AP, Gazenaur NV. Optical properties of composites based on a transparent matrix and copper nanoparticles. Russ Phys J 2016; 59(2): 263-272. DOI: 10.1007/s11182-016-0766-z.
  20. Sheldon SJ, Knight LV, Thorne JM. Laser-induced thermal lens effect: a new theoretical model. Appl Opt 1982; 21(9): 1663-1669. DOI: 10.1364/AO.21.001663.
  21. Bianchi GS, Zanuto VS, Astrath FBG, Malacarne LC, Terra AA, Catunda T, Nunes LAO, Jacinto C, Andrade LHC, Lima SM, Baesso ML, Astrath NGC. Resonant excited state absorption and relaxation mechanisms in Tb3+-doped calcium aluminosilicate glasses: an investigation by thermal mirror spectroscopy. Opt Letters 2013; 38(22): 4667-4670. DOI: 10.1364/OL.38.004667.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20