Application of additional input amplitude masks in schemes of optical image encryption with spatially incoherent illumination
N.N. Evtikhiev, V.V. Krasnov, P.A. Cheremkhin, A.V. Shifrina

 

National Research Nuclear University MEPhI, Moscow, Russia

Full text of article: Russian language.

 PDF

Abstract:
Application of additional input amplitude masks in schemes of optical image encryption with spatially incoherent illumination is proposed. The masks are used for increasing the signal-to-noise ratio in decrypted images and enhancing the security of encrypted images. Two kinds of additional input amplitude masks were developed and tested. The first one is a rectangular grating mask. Its application results in duplications of the original image spectrum at high spatial frequencies corresponding to mask’s frequency. The second one is a random mask. Its application results in the distribution of each component of the original image spectrum throughout the entire Fourier spectrum. Computer simulations of optical encryption with spatially incoherent illumination and additional input amplitude masks were performed. Increase in signal-to-noise ratio of  ? 2 times was achieved, as well as attaining the enhanced security of the encrypted image.

Keywords:
optical encryption, spatially incoherent illumination, amplitude masks, optical convolution.

Citation:
Evtikhiev NN, Krasnov VV, Cheremkhin PA, Shifrina AV. Application of additional input amplitude masks in schemes of optical image encryption with spatially incoherent illumination. Computer Optics 2017; 41(3): 391-398. DOI: 10.18287/2412-6179-2017-41-3-391-398.

References:

  1. Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett 1995; 20(7): 767-769. DOI: 10.1364/OL.20.000767.
  2. Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett 2000; 25(12): 887-889. DOI: 10.1364/OL.29.001584.
  3. Krasnov VV, Starikov SN, Starikov RS, Cheremkhin PA. Optical encryption of arrays of binary digits in spatially incoherent light. Russ Phys J 2016; 58(10): 1394-1401. DOI: 10.1007/s11182-016-0661-7.
  4. Evtikhiev NN, Starikov SN, Cheryomkhin PA, Krasnov VV, Rodin VG. Method of optical image coding by time integration. Proc SPIE 2012; 8429: 84291P. DOI: 10.1117/12.922540.
  5. Cathey WT, Dowski ER. New paradigm for imaging systems. Appl Opt 2002; 41(29): 6080-6092. DOI: 10.1364/AO.41.006080.
  6. Cheremkhin PA, Evtikhiev NN, Krasnov VV, Rodin VG, Starikov SN. Generation of keys for image optical encryption in spatially incoherent light aimed at reduction of image decryption error. Proc of SPIE 2014; 9131, 913125. DOI: 10.1117/12.2052723.
  7. Li J, Shen L, Pan Y, Li R. Optical image encryption and hiding based on a modified Mach-Zehnder interferometer. Optics Express 2014; 22(4): 4849-4860. DOI: 10.1364/OE.22.004849.
  8. Liu Z, Dai J, Sun X, Liu S. Color image encryption by using the rotation of color vector in Hartley transform domains. Optics and Lasers in Engineering 2010; 48(7): 800-805. DOI: 10.1016/j.optlaseng.2010.02.005.
  9. Barrera JF, Mira A., Torroba R. Optical encryption and QR codes: Secure and noise-free information retrieval. Optics Express 2013; 21(5): 5373-5378. DOI: 10.1364/O­E.21.005373.
  10. Cheremkhin PA, Krasnov VV, Rodin VG, Starikov RS. QR code optical encryption using spatially incoherent illumination. Laser Physics Letters 2017; 14(2): 026202. DOI: 10.1088/1612-202X/aa5242.
  11. Lesem LB, Hirsch PM, Jordan JA. The kinoform: A new wavefront reconstruction device. IBM J Res Dev 1969; 13(2): 150-155. DOI: 10.1147/rd.132.0150.
  12. Kotlyar VV, Khonina SN. Encoding of optical diffractive elements by method of local surge of phase [In Russian]. Computer Optics 1999; 19: 54-64.
  13. Qu W, Gu H, Tan Q, Jin G. Precise design of two-dimensional diffractive optical elements for beam shaping. Appl Opt 2015; 54(21): 6521-6525. DOI: 10.1364/A­O.54.006521
  14. Khonina SN, Skidanov RV, Moiseev OY. Airy laser beams generation by binary-coded diffractive optical elements for microparticles manipulation [In Russian]. Computer Optics 2009; 33(2): 138-146.
  15. Rahlves M, Rezem M, Boroz K. Flexible, fast, and low-cost production process for polymer based diffractive optics. Optics Express 2015; 23(3): 3614-3622. DOI: 10.1364/OE.23.003614.
  16. Janesick J. Scientific Charge-Coupled Devices. Bellingham, Washington: SPIE Press; 2001. ISBN: 0-8194-3698-4.
  17. Arsenin VY, Tikhonov AN. Methods for solving of incorrect problems [In Russian]. Moscow: “Nauka” Publisher, 1979.
  18. Cheremkhin PA, Evtikhiev NN, Krasnov VV, Molodtsov DY, Rodin VG, Shifrina AV. Application of input ampli­tude masks in image encryption with spatially incoherent illumination for increase of decrypted images signal-to-noise ratio. Proc SPIE 2016; 9889: 988911. DOI: 10.1117/12.2227596.
  19. Yaroslavsky LP, Merzliakov YS. Methods of digital holo­graphy [In Russian]. Moscow: “Nauka” Publisher, 1977.
  20. Saleh BEA, Teich MC. Fundamentals of photonics. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, Inc, 1991. ISBN: 978-0-471-83965-1.
  21. Fienup, JR. Invariant error metrics for image reconstruction. Appl Opt 1997; 36(32): 8352-8357. DOI: 10.1364/AO.36.008352.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20