Research of an algorithm for crystal lattice parameter identification based on the gradient steepest descent method
A.S. Shirokanev, D.V. Kirsh, A.V. Kupriyanov
Samara National Research University, Samara, Russia,
Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia
Full text of article: Russian language.
PDF
Abstract:
In the analysis of a crystalline substance, the problem of crystal lattice parameter identification is of a great interest. However, the existing methods for solving this problem, such as the Bravais cell parameters estimation method and Wigner-Seitz cell volume estimation method, do not provide the required level of accuracy. Aiming to address the problem of low identification accuracy, the paper proposes an algorithm for crystal lattice parameter identification based on the gradient steepest descent method. The study of the feasibility of the structure parameter identification is carried out using a large set of distorted lattices. The results obtained show a significant increase in the identification accuracy in comparison with the above-mentioned parameter identification methods.
Keywords:
parametric identification, unit cell, crystal lattice, Bravais cell, Wigner-Seitz cell, gradient steepest descent method.
Citation:
Shirokanev AS, Kirsh DV, Kupriyanov AV. Research of an algorithm for crystal lattice parameter identification based on the gradient steepest descent method. Computer Optics 2017; 41(3): 453-460. DOI: 10.18287/2412-6179-2017-41-3-453-460.
References:
- Fursov VA, Goshin YeV. Information technology for digital terrain model reconstruction from stereo images [In Russian]. Computer Optics 2014; 38(2): 335-342.
- Kotov AP, Fursov VA, Goshin YeV. Technology for fast 3D-scene reconstruction from stereo images [In Russian]. Computer Optics 2015; 39(4): 600-605. DOI: 10.18287/0134-2452-2015-39-4-600-605.
- Kudinov IA, Pavlov OV, Kholopov IS. Implementation of an algorithm for determining the spatial coordinates and the angular orientation of an object based on reference marks, using information from a single camera [In Russian]. Computer Optics 2015; 39(3): 413-419. DOI: 10.18287/0134-2452-2015-39-3-413-419.
- Bessmeltsev VP, Bulushev ED. Fast image registration algorithm for automated inspection of laser micromachining [In Russian]. Computer Optics 2014; 38(2): 343-350.
- Shirokanev AS, Kirsh DV, Kupriyanov AV. Researching methods of reconstruction of three-dimensional crystal lattice from images of projections. CEUR Workshop Proceedings 2015; 1490: 290-297. DOI: 10.18287/1613-0073-2015-1490-290-297.
- Kharitonov SI, Volotovskiy SG, Khonina SN, Kazanskiy NL. A differential method for calculating X-ray diffraction on crystals: the scalar theory [In Russian]. Computer Optics 2015; 39(4): 469-479. DOI: 10.18287/0134-2452-2015-39-4-469-479.
- Egerton RF. Physical principles of electron microscopy [In Russian]. Мoscow: “Tehnosfera” Publisher; 2010. ISBN: 978-5-94836-254-0.
- Kupriyanov AV. The observability of the crystal lattice by multiple nodes upon the images of their projections [In Russian]. Computer Optics 2012; 36(4): 586-589.
- Shaskolskaya MP. Crystallography: Manual for institutes of higher education [In Russian]. Moscow: "Higher School" Publisher; 1984.
- Kirsh DV, Kupriyanov AV. Estimating the similarity measure of crystal lattices by coordinates of their nodes in three-dimensional space [In Russian]. Computer Optics 2012; 36(4): 590-595.
- Kupriyanov AV, Kirsh DV. Estimation of the crystal lattice similarity measure by three-dimensional coordinates of lattice nodes. Optical Memory & Neural Networks (Information Optics) 2015; 24(2): 145-151. DOI: 10.3103/S1060992X15020101.
- Kirsh DV, Kupriyanov AV. Crystal lattice identification by coordinates of their nodes in three dimensional space // Pattern recognition and image analysis 2015; 25(3): 456-460. DOI: 10.1134/S1054661815030116.
- Kirsh DV, Kupriyanov AV. Identification of three-dimensional crystal lattices by estimation of their unit cell parameters // CEUR Workshop Proceedings 2015: 40-45.
- Soldatova OP, Lyozin IA, Lyozina IV, Kupriyanov AV, Kirsh DV. Application of fuzzy neural networks for defining crystal lattice types in nanoscale images [In Russian]. Computer Optics 2015; 39(5): 787-794. DOI: 10.18287/0134-2452-2015-39-5-787-794.
- Kirsh DV, Kupriyanov AV. Modeling and identification of centered crystal lattices in three-dimensional space // Information Technology and Nanotechnology (ITNT-2015) 2015: 162-170.
- Hammond C. The basic of crystallography and diffraction. 3rd Ed. New York: Oxford University Press Inc.; 2009. ISBN: 978-0-19-954645-9.
- Brandon D, Kaplan WD. Microstructural Characterization of Materials. New York: John Wiley & Sons; 1999. ISBN: 0-471-98502-3.
- Andrews LC, Bernstein HJ. Lattices and reduced cells as points in 6-space and selection of Bravais lattice type by projections. Acta Cryst Sect A 1988; 44(6): 1009-1018. DOI: 10.1107/S0108767388006427.
- Kessler E, Henins A, Deslattes R, Nielsen L, Arif M. Precision comparison of the lattice parameters of silicon monocrystals. J Res Natl Inst Stand Technol 1994; 99(1): 1-18.
- Smith WF, Hashemi J. Foundations of Materials Science and Engineering. 3rd ed. Boston, London: McGraw-Hill Publishing Company; 2004. ISBN: 0-072-40233-4.
- Patera J, Skala V. Centered cubic lattice method comparison. Proceedings of Algoritmy 2005: 309-318.
- Shirokanev AS, Kirsh DV, Kupriyanov AV. Application of gradient steepest descent method to the problem of crystal lattice parametric identification. CEUR Workshop Proceedings 2016; 1638: 393-400. DOI: 10.18287/1613-0073-2016-1638-393-400.
- Shirokanev AS, Kirsh DV, Kupriyanov AV. Development of the crystal lattice parameter identification method based on the gradient steepest descent method. Computer Science Research Notes 2016; 2603: 65-68.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20