Modeling of surface plasmon resonance in a bent single-mode metallized optical fiber with finite element method
Dyshlyuk A.V., Vitrik O.B., Kulchin Yu.N.

 

Institute of Automation and Control Processes оf Far Eastern Branch of RAS, Vladivostok, Russia

Full text of article: Russian language.

 PDF

Abstract:
In this paper, we present a numerical study of surface plasmon resonance (SPR) excitation in a bent single-mode optical fiber with metallized cladding. It is shown that with a suitable combination of the bending radius and metal film thickness, surface plasmon waves can be excited in the film as a result of coupling between the fundamental and surface plasmon modes via whispering gallery modes (WGM) supported by the bent fiber cladding. The coupling brings about a dip in the transmission spectrum at the resonant wavelength which is strongly dependent on the ambient refractive index, thus, making it possible to build an SPR- refractometer based on a single-mode fiber without breaking the structural integrity of the fiber or using any additional elements. The refractometric sensitivity of ~12 mm/RIU are demonstrated.

Keywords:
surface plasmon resonance, fiber optic refractometer, biosensing, chemosensing, whispering gallery modes, bent optical fiber.

Citation:
Dyshlyuk AV, Vitrik OB, Kulchin YuN. Modeling of surface plasmon resonance in a bent single-mode metallized optical fiber with finite element method. Computer Optics 2017; 41(5): 599-608. DOI: 10.18287/2412-6179-2017-41-5-599-608.

References:

  1. Rasooly A, Herold KE, eds. Biosensors and biodetection. Humana Press; 2009. ISBN: 978-1-60327-566-8.
  2. Baldini F, Chester AN, Homola J, Martellucci S, eds. Optical chemical sensors. Dordrecht, The Netherlands: Springer Science & Business Media; 2006. ISBN: 978-1-4020-4609-4.
  3. McDonagh C, Burke CS, MacCraith BD. Optical chemical sensors. Chemical Reviews 2008; 108(2): 400-422. DOI: 10.1021/cr068102g.
  4. Zourob M, Lakhtakia A, eds. Optical guided-wave chemical and biosensors I. Berlin, Heidelberg: Springer Science & Business Media; 2010. ISBN: 978-3-540-88241-1.
  5. Zourob M, Lakhtakia A, eds. Optical guided-wave chemical and biosensors II. Berlin, Heidelberg: Springer Science & Business Media; 2010. ISBN: 978-3-642-02826-7.
  6. Ligler FS, Taitt CR, eds. Optical biosensors: Today and tomorrow. Elsevier; 2011. ISBN: 978-0-444-53125-4.
  7. Homola J. Electromagnetic theory of surface plasmons. In book: Homola J, ed. Surface plasmon resonance based sensors. Berlin, Heidelberg: Springer; 2006: 3-44. ISBN: 978-3-540-33918-2.
  8. Cooper MA. Optical biosensors in drug discovery. Nat Rev Drug Discov 2002; 1(7): 515-528. DOI: 10.1038/nrd838.
  9. Xiao G, Bock WJ, eds. Photonic sensing: Principles and applications for safety and security monitoring. Hoboken, NJ: A John Wiley & Sons, Inc.; 2012. ISBN: 978-0-470-62695-5.
  10. Leung A, Shankar PM, Mutharasan R. A review of fiber-optic biosensors. Sensors and Actuators B: Chemical 2007; 125(2): 688-703. DOI: 10.1016/j.snb.2007.03.010.
  11. Bosch ME, Sánchez AJR, Rojas FS, Ojeda CB. Recent development in optical fiber biosensors. Sensors 2007; 7(6): 797-859. DOI: 10.3390/s7060797.
  12. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. Sensitive optical biosensors for unlabeled targets: A review. Anal Chim Acta 2008; 620(1-2): 8-26. DOI: 10.1016/j.aca.2008.05.022.
  13. Wang X, Wolfbeis OS. Fiber-optic chemical sensors and biosensors (2013–2015). Analytical Chemistry 2015; 88(1): 203-227. DOI: 10.1021/acs.analchem.5b04298.
  14. Wang P, Wang Q, Farrell G, Rajan G, Freir Th, Cassidy J. Investigation of macrobending losses of standard single mode fiber with small bend radii. Microwave and Optical Technology Letters 2007; 49(9): 2133-2138. DOI: 10.1002/mop.22671.
  15. Harris A, Castle P. Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius. Journal of Lightwave technology 1986; 4(1): 34-40. DOI: 10.1109/JLT.1986.1074626.
  16. Renner H. Bending losses of coated single-mode fibers: A simple approach. Journal of Lightwave Technology 1992; 10(5): 544-551. DOI: 10.1109/50.136086.
  17. Wang Q, Farrell G, Freir T. Theoretical and experimental investigations of macro-bend losses for standard single mode fibers. Optics Express 2005; 13(12): 4476-4484. DOI: 10.1364/OPEX.13.004476.
  18. Wang P, Semenova Yu, Wu Q, Farrell G, Ti Y, Zheng J. Macrobending single-mode fiber-based refractometer. Appl Opt 2009; 48(31): 6044-6049. DOI: 10.1364/AO.48.006044.
  19. Kulchin YN, Vitrik OB, Gurbatov SO. Effect of small variations in the refractive index of the ambient medium on the spectrum of a bent fibre-optic Fabry–Perot interferometer. Quantum Electronics 2011; 41(9): 821-823. DOI: 10.1070/QE2011v041n09ABEH014677.
  20. Nam SH, Yin S. High-temperature sensing using whispering gallery mode resonance in bent optical fibers. IEEE Photonics Technology Letters 2005; 17(11): 2391-2393. DOI: 10.1109/LPT.2005.857988.
  21. Rajan G, Semenova Y, Farrell G. All-fibre temperature sensor based on macro-bend singlemode fibre loop. Electronics Letters 2008; 44(19): 1123-1124. DOI: 10.1049/el:20081233.
  22. Wang P, Semenova Yu, Li Y, Wu Q, Farrell G. A macrobending singlemode fiber refractive index sensor for low refractive index liquids. Photonics Letters of Poland 2010; 2(2): 67-69. DOI: 10.4302/plp.2010.2.05.
  23. Chiang C-C, Chao J-C. Whispering gallery mode based optical fiber sensor for measuring concentration of salt solution. Journal of Nanomaterials 2013; 2013: 372625. DOI: 10.1155/2013/372625.
  24. Gupta BD, Verma RK. Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. Journal of sensors 2009; 2009: 979761. DOI: 10.1155/2009/979761.
  25. Srivastava SK, Gupta BD. Fiber optic plasmonic sensors: past, present and future. The Open Optics Journal 2013; 7(1): 58-83. DOI: 10.2174/1874328501307010058.
  26. Guo X. Surface plasmon resonance based biosensor technique: a review. Journal of Biophotonics 2012; 5(7): 483-501. DOI: 10.1002/jbio.201200015.
  27. Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 2015; 407(14): 3883-3897. DOI: 10.1007/s00216-014-8411-6.
  28. Homola J. Optical fiber sensor based on surface plasmon excitation. Sensors and Actuators B: Chemical 1995; 29(1-3): 401-405. DOI: 10.1016/0925-4005(95)01714-3.
  29. Schuster T, Herschel R, Neumann N, Schaffer CG. Miniaturized long-period fiber grating assisted surface plasmon resonance sensor. J Lightw Technol 2012; 30(8): 1003-1008. DOI: 10.1109/JLT.2011.2166756.
  30. Albert J, Shao LY, Caucheteur C. Tilted fiber Bragg grating sensors. Laser & Photonics Reviews 2013; 7(1): 83-108. DOI: 10.1002/lpor.201100039.
  31. Kulchin YN, Vitrik OB, Dyshlyuk AV. Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method. Optics Express 2014; 22(18): 22196-22201. DOI: 10.1364/OE.22.022196.
  32. Kulchin Y, Vitrik OB, Dyshlyuk AV, Gurbatov SO, Lu G. Surface plasmon resonance excitation in a bent single-mode optical fiber with metal-coated cladding: Numerical simulation. Tech Phys Lett 2014; 40(12): 1107-1110. DOI: 10.1134/S1063785014120281.
  33. Palik ED. Handbook of optical constants of solids. Vol 3. San Diego: Academic Press; 1998. ISBN: 978-0-125444231.
  34. Gallagher DFG, Felici TP. Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons. Proc SPIE 2003; 4987: 69-82. DOI: 10.1117/12.473173.
  35. Snyder AW, Love JD. Optical waveguide theory. Springer Science & Business Media; 2012. ISBN: 978-1-461328131.
  36. Sammut R, Snyder AW. Leaky modes on a dielectric waveguide: orthogonality and excitation. Appl Opt 1976; 15(4): 1040-1044. DOI: 10.1364/AO.15.001040.
  37. Barthes J, Colas des Francs G, Bouhelier A, Dereux A. A coupled lossy local-mode theory description of a plasmonic tip. New Journal of Physics 2012; 14(8): 083041. DOI: 10.1088/1367-2630/14/8/083041.
  38. Ding W, Andrews SR, Maier SA. Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Phys Rev A 2007; 75(6): 063822. DOI: 10.1103/PhysRevA.75.063822.
  39. Novotny L, Hafner C. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E 1994; 50(5): 4094-4106. DOI: 10.1103/PhysRevE.50.4094.
  40. Refki S, Hayashi Sh, Rahmouni A, Nesterenko DV, Sekkat Z. Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures. Plasmonics 2016; 11(2): 433-440. DOI: 10.1007/s11468-015-0047-7.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru ; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20