Recovery and analysis of Raman spectra obtained using a static Fourier transform spectrometer
Vasil’ev N.S., Vintaykin I.B., Golyak Ig.S., Golyak Il.S., Kochikov I.V., Fufurin I.L.

 

The Bauman Moscow State Technical University, Moscow, Russia,

Lomonosov Moscow State University, Moscow, Russia

Full text of article: Russian language.

 PDF

Abstract:
The recovery of Raman spectra in the 800-1050-nm spectral range from a prototype static Fourier-transform spectrometer is described. Distortion effects introduced by the optical system of the static Fourier-transform spectrometer are studied. A method of correcting optical distortion is suggested. The proposed algorithm is tested using a monochromatic radiation source. A two-dimensional map of period distribution in the distorted interference pattern is plotted. A mapping that enables optical distortions of the two-dimensional interferogram to be corrected is proposed. The correction results are demonstrated by plotting interference fringe profiles. A comparison of various well-known phase correction methods in order to identify an optimal algorithm is presented. A matching criterion for the obtained spectra is proposed. Raman spectrum of a stilbene crystal obtained by a diffraction spectrometer with a resolution of δν = 14 cm-1 is used as a reference.

Keywords:
Fourier optics and digital signal processing, interference pattern, Raman spectroscopy, FTIR spectroscopy, Image processing, Recognition.

Citation:
Vasil’ev NS, Vintaykin IB, Golyak IgS, Golyak IlS, Kochikov IV, Fufurin IL. Recovery and analysis of Raman spectra obtained using a static Fourier transform spectrometer. Computer Optics 2017; 41(5): 626-635. DOI: 10.18287/2412-6179-2017-41-5-626-635.

References:

  1. Golyak IS, Morozov AN, Svetlichnyi SI, Fufurin IL. Interferometer with Rotating Plate: Fundamentals. 2015 Int Conf Ind Inform Mach Mater 2015: 188-192. ISBN: 978-1-60595-078-5.
  2. Jacquot P, Dufour JC. Conditions optiques d’emploi des cellules photo-electriques dans les spectrographs et les interferometers. J Rech Cent Natl Rech Sci 1948; 9: 91-103.
  3. Fellget P. A contribution to the theory of the multiplex interferometric spectrometer. I. - les principes généraux des méthodes nouvelles en spectroscopie interférentielle - A propos de la théorie du spectromètre interférentiel multiplex. J Phys Radium 1958; 19(3): 187-191. DOI: 10.1051/jphysrad:01958001903018700.
  4. Vintaikin IB, et al. Raman spectrometer based on a static Michelson interferometer [In Russian]. "Proceedings of RAS. Power Engineering" Journal 2016; 6: 144-152.
  5. Dzsaber S, Negyedi M, Bernáth B, Gyüre B, Fehér T, Kramberger C, Pichler T, Simon F. A Fourier transform Raman spectrometer with visible laser excitation. J Raman Spectrosc 2015; 46(3): 327-332. DOI: 10.1002/jrs.4641.
  6. Hu G, Xiong W, Shi H, Li Z, Shen J, Fang X. Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer. Opt Eng 2015; 54(11): 114101. DOI: 10.1117/1.OE.54.11.114101.
  7. Morozov AN, Tabalin SE, Fufurin IL, Svetlichnyi SI. Physical principles of the design of an interferometer with a rotating plate. J Opt Technol 2013; 80(8): 495-498. DOI: 10.1364/JOT.80.000495.
  8. Boiko AYu, Golyak IgS, Golyak IlS, Dvoruk SK, Dorovskikh АМ, Yesakov AA, Kornienko VN, Kosenko DV, Kochikov IV, Morozov AN, Svetlichnyi SI, Tabalin SYe. Static Fourier spectrometer of visible and near-ultraviolet spectral regions [In Russian]. Herald of the Bauman Moscow State Technical University: Series Natural Sciences 2009; 3: 10-28.
  9. Heikkila J, Silvén O. A four-step camera calibration procedure with implicit image correction. Proc CVPR 1997: 1106-1112. DOI: 10.1109/CVPR.1997.609468.
  10. Tsai RY. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J Robot Autom 1987; 3(4): 323-344. DOI:10.1109/JRA.1987.1087109.
  11. Meng X, Hu Z. A new easy camera calibration technique based on circular points. Pattern Recogn 2003; 36(5): 1155-1164. DOI: 10.1016/S0031-3203(02)00225-X.
  12. Prescott B, McLean GF. Line-based correction of radial lens distortion. Graph Models Image Process 1997; 59(1): 39-47. DOI:10.1006/gmip.1996.0407.
  13. Zhimbueva LD. Method of determining the total distortion digital images [In Russian]. Computer Optics 2011; 35(3): 347-355. ISSN: 0134-2452.
  14. Kunina IA, Gladilin SA, Nikolaev DP. Blind radial distortion compensation in a single image using fast Hough transform [In Russian]. Computer Optics 2016; 40(3): 395-403. DOI: 10.18287/2412-6179-2016-40-3-395-403.
  15. Brown DC. Close-range camera calibration. Photogramm Eng 1971; 37(8): 855-866.
  16. Song Y, Wei X, Xinqiang W, Jin H, Yanli Q. Correction of spatial heterodyne interferogram base on frequency domain analysis. Acta Optica Sinica 2013; 33(5): 0530001. DOI: 10.3788/aos201333.0530001.
  17. Morozov AN, Svetlichnyi SI. Fundamentals of Fourier spectroradiometry [In Russian]. 2nd ed. Moscow: "Nauka" Publisher; 2014. ISBN: 978-5-02-039051-5.
  18. Mertz L. Correction of phase errors in interferograms. Appl Opt 1963; 2(12): 1332-1332. DOI: 10.1364/AO.2.001332.
  19. Forman ML, Steel WH, Vanasse GA. Correction of asymmetric interferograms obtained in Fourier spectroscopy. JOSA 1966; 56(1): 59-61. DOI: 10.1364/JOSA.56.000059.
  20. Chase DB. Phase correction in FT-IR. Appl Spectrosc 1982; 36(3): 240-244. DOI:10.1366/0003702824638430.
  21. Ben-David A, Ifarraguerri A. Computation of a spectrum from a single-beam Fourier-transform infrared interferogram. Appl Opt 2002; 41(6): 1181-1189. DOI: 10.1364/AO.41.001181.
  22. Furstenberg R, White JO. Phase correction of interferograms using digital all-pass filters. Appl Spectrosc 2005; 59(3): 316-321. DOI: 10.1366/0003702053585345.
  23. Wu X, Liu Z, Li H. A new model for the phase correction of interferograms. Anal Methods 2015; 7(6): 2399-2405. DOI: 10.1039/C4AY02433H.
  24. Porter CD, Tanner DB. Correction of phase errors in Fourier spectroscopy. Int J Infrared Millim Waves 1983; 4(2): 273-298. DOI: 10.1007/BF01008607.
  25. Rosolovsky EW, Goodman AA, Wilner DJ, Williams JP. The spectral correlation function: A new tool for analyzing spectral line maps. Astrophys J 1999; 524(2): 887-894. DOI: 10.1086/307863.
  26. Kasseck C, Jaedicke V, Gerhardt NC, Welp H, Hofmann MR. Substance identification by depth resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography. Opt Commun 2010; 283(23): 4816-4822. DOI: 10.1016/j.optcom.2010.06.073.
  27. Gutiérrez-Rodríguez AE, Medina-Pérez MA, Martínez-Trinidad JF, Carrasco-Ochoa JA, García-Borroto M. New dissimilarity measures for ultraviolet spectra identification. In book: Martínez-Trinidad JF, Carrasco-Ochoa JA, Kittler J, eds. Advances in Pattern Recognition. MCPR 2010. Berlin, Heidelberg: Springer; 2010: 220-229. DOI: 10.1007/978-3-642-15992-3_24.
  28. Kochikov IV, Morozov AN, Fufurin IL. Numerical procedures for substances identification and concentration calculation in the open athmosphere by processing a single FTIR measurement [In Russian]. Computer Optics 2012; 36(4): 554-561.
  29. Kochikov IV, Morozov AN, Svetlichnyi SI, Fufurin IL. Substance recognition in the open atmosphere from a single Fourier transform spectroradiometer interferogram. Opt Spectrosc 2009; 106(5): 666-671. DOI: 10.1134/S0030400X09050075.
  30. Morozov AN, Kochikov IV, Novgorodskaya AV, Sologub AA, Fufurin IL. Statistical estimation of the probability of the correct substance detection in FTIR spectroscopy. Computer Optics 2015; 39(4): 614-621. DOI: 10.18287/0134-2452-2015-39-4-614-621.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru ; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20