Polarization properties of three-dimensional electromagnetic Gaussian Schell-Model sources
Korotkova O.

 

Department of Physics, University of Miami, Coral Gables, FL, USA

 PDF

Abstract:
The polarization properties of the recently introduced three-dimensional electromagnetic Gaussian Schell-model sources [Opt. Lett. 42, 1792 (2017)] are examined. Both cases of uniform and non-uniform polarization are considered. The three-dimensional polarization states are characterized via the eigenvalues of a 3×3 source polarization matrix and, more specifically, via the indices of polarimetric purity. We show that the considered sources exhibit a variety of polarization states throughout their volumes conveniently controlled by several physically accessible source parameters.

Keywords:
polarization, coherence.

Citation:
Korotkova O. Polarization properties of three-dimensional electromagnetic Gaussian Schell-Model sources. Computer Optics 2017; 41(6): 791-795. DOI: 10.18287/2412-6179-2017-41-6-791-795.

References:

  1. Korotkova O, Ahad L, Setälä T. Three-dimensional electromagnetic Gaussian Schell-model sources. Opt Lett 2017; 42(9): 1792-1795. DOI: 10.1364/OL.42.001792.
  2. Hyde IV MW, Bose-Pillai SR, Korotkova O. Synthesizing three-dimensional electromagnetic Gaussian Schell-model sources for optical simulations. Opt Express (submitted).
  3. Bourret RC. Coherence properties of blackbody radiation. Il Nuovo Cimento 1960; 18(2): 347-356. DOI: 10.1007/BF02725944.
  4. Mehta CL, Wolf E. Coherence properties of blackbody radiation. I. Correlation tensors of the classical fields. Phys Rev 1964; 134(5A): A1143-A1149. DOI: 10.1103/PhysRev.134.A11143.
  5. Mehta CL, Wolf E. Coherence properties of blackbody radiation. III. Cross-spectral tensors. Phys Rev 1967; 161(5): 1328-1334. DOI: 10.1103/PhysRev.161.1328.
  6. James DFW. Polarization of light radiated by black-body sources. Opt Commun 1994; 109(3-4): 209-214. DOI: 10.1016/0030-4018(94)90681-5.
  7. Blomstedt K, Friberg AT, Setala T. Classical coherence of blackbody radiation. Chapter 5. In book: Visser T, ed. Progress in Optics 2017: 293-346. DOI: 10.1016/bs.po.2017.02.001.
  8. Wolf E. Introduction to the theories of coherence and polarization of light. Cambridge: Cambridge University Press; 2007. ISBN 978-0-521-82211-4.
  9. Ellis J, Dogariu A, Ponomarenko S, Wolf E. Correlation matrix of a completely polarized, statistically stationary electromagnetic field. Opt Lett 2004; 29(13): 1536-1538. DOI: 10.1364/OL.29.001536.
  10. Ellis J, Dogariu A, Ponomarenko S, Wolf E. Degree of polarization of statistically stationary electromagnetic fields. Opt Commun 2005; 248(4-6): 333-337. DOI: 10.1016/j.optcom.2004.12.050.
  11. Gil J. Polarimetric characterization of light and media. Eur Phys J Appl Phys 2007; 40: 1-47. DOI: 10.1051/epjap:2007153.
  12. Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge, UK: Cambridge University Press; 1995. ISBN: 0-521-41711-2.
  13. Sheppard CJR. Partial polarization in three dimensions. J Opt Soc Am A 2011; 28(12): 2655-2659. DOI: 10.1364/JOSAA.28.002655.
  14. Sheppard CJR. Geometric representation for partial polarization in three dimensions. Opt Lett 2012; 37(14): 2772-2774. DOI: 10.1364/OL.37.002772.
  15. Jil JJ. Interpretation of the coherency matrix for three-dimensional polarization states. Phys Rev A 2014; 90(4): 043858. DOI:10.1103/PhysRevA.90.043858.
  16. Al-Qasiami A, Korotkova O, James DFW, Wolf E. Definitions of the degree of polarization of a light beam. Opt Lett 2007; 32(9): 1015-1016. DOI: 10.1364/OL.32.001015.
  17. Nickalls RWD. Viete, Descartes and the cubic equation. Mathematical Gazette 2006; 90(518): 203-208. DOI: 10.1017/S0025557200179598.
  18. Gori F, Santarsiero M, Piquero G, Borghi R, Mondello A, Simon R. Partially polarized Gaussian Schell-model beams. J Opt A: Pure Appl Opt 2001; 3(1): 1-9. DOI: 10.1088/1464-4258/3/1/301.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20