Propagation of terahertz pulses in capillary waveguides with a metalized cladding
Sotsky A.B., Shilov A.V., Sotskaya L.I.

 

Mogilev State A. Kuleshov University, Mogilev, Belorussia,
Belarusian-Russian University, Mogilev, Belorussia

Full text of article: Russian language.

 PDF

Abstract:
Relations are obtained that make it possible to compute the field of the wide-band terahertz pulse in capillary waveguides with a hollow core and a metalized cladding. From the standpoints of maximization of the pulse energy transfer coefficient and time-domain spectroscopy of air, two types of waveguides are investigated: hollow waveguides with a metalized cladding and dielectric-lined waveguides whose hollow core is separated from the metal by a dielectric layer. It is shown that the efficiency of the waveguides of the second type is higher due to their quasi-single-mode operation.

Keywords:
terahertz pulse, terahertz spectroscopy, hollow core waveguide.

Citation:
Sotsky AB, Shilov AV, Sotskaya LI. Propagation of terahertz pulses in capillary waveguides with a metalized cladding. Computer Optics 2017; 41(6): 803-811. DOI: 10.18287/2412-6179-2017-41-6-803-811.

References:

  1. Atakaramians Sh, Afshar ShV, Monro TM, Abbott D. Terahertz dielectric waveguides. Advances in Optics and Photonics 2013; 5(2): 169-215. DOI: 10.1364/AOP.5.000169.
  2. Barh A, Agrawal GP, Pal BP, Varshney RK, Rahman BMA. Specialty fibers for terahertz generation and transmission: A review. IEEE Journal of Selected Topics in Quantum Electronics 2016; 22(2): 1-14. DOI: 10.1109/JSTQE.2015.2494537.
  3. Agafonov AN, Volodkin BO, Kaveev AK, Knyazev BA, Kropotov GI, Pavelyev VS, Tukmakov KN, Choporova YuYu. Control of transverse modal spectrum of terahertz laser irradiation by binary silicon optical elements [In Russian]. Computer Optics 2014; 38(4): 763-769.
  4. Harrington JA, George R, Pedersen P, Mueller E. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. Optics Express 2004; 12(21): 5263-5268. DOI: 10.1364/OPEX.12.005263.
  5. Matsuura Y, Takeda E. Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy. JOSA B 2008; 25(12): 1949-1954. DOI: 10.1364/JOSAB.25.001949.
  6. Navarro-Cia M, Vitiello MS, Bledt CM, Melzer JE, Harrington JA, Mitrofanov O. Terahertz wave transmission in flexible poly-styrene-lined hollow metallic waveguides for the 2.5-5 THz band. Optics Express 2013; 21(20): 23748-23755. DOI: 10.1364/OE.21.023748.
  7. Ito K, Katagiri T, Matsuura Y. Analysis of transmission properties of terahertz hollow-core optical fiber by using time-domain spectroscopy and application for remote spectroscopy. JOSA B 2017; 34(1): 60-65. DOI: 10.1364/JOSAB.34.000060.
  8. Miyagi M, Kawakami S. Design theory of dielectric-coated circular metallic waveguides for infrared transmission. J Lightw Technol 1984; 2(2): 116-126. DOI: 10.1109/JLT.1984.1073590.
  9. Mitrofanov O, Navarro-Cia M, Vitiello MS, Melzer JE, Harrington JA. Terahertz waveguides with low transmission losses: Characterization and applications. Proc SPIE 2014; 9199; 91990I. DOI: 10.1117/12.2062758.
  10. Auston DH, Cheung KP, Valdmanis JA, Kleinman DA. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys Rev Lett 1984; 53(16); 1555-1558. DOI: 10.1103/PhysRevLett.53.1555.
  11. Abramovits M, Stegun IA, eds. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. National Bureau of Standards; 1964.
  12. Jepsen PU, Jacobsen RH, Keiding SR. Generation and detection of terahertz pulses from biased semiconductor antennas. JOSA B 1996; 13(11); 2424-2436. DOI: 10.1364/JOSAB.13.002424.
  13. Sotsky AB, Belskaya OA, Sotskaya LI. Diffraction of light beam on microstructured fiber. Computer Optics 2014; 38(1); 11-19.
  14. Snyder AW, Love JD. Optical waveguide theory. New York: Chapman and Hall Publishers; 1983. ISBN: 0-412-09950-0.
  15. Unger HG. Planar optical waveguides and fibers. Oxford: Clarendon Press Inc; 1977.
  16. Dexheimer SL. Terahertz spectroscopy: principles and applications. New York: CRS Press; 2007. ISBN: 978-0-849375255.
  17. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 1983; 22(7): 1099-1120. DOI: 10.1364/AO.22.001099.
  18. Nazarov MM, Kitai MS, Sokolov VI, Bzheumihov KA, Margushev ZCh, Sotsky AB, Shilov AV, Sotskaya LI, Goncharenko AM, Sinitsyn GV. Investigations of capillary polymer terahertz fibers. In: Proc XXI Int Conf Coherent Nonlinear Optics (ICONO 2016); 2016.
  19. Weinstein LA. Electromagnetic waves. University Reprints, Science Department; 2012.
  20. Cheville RA, Grischkowsky D. Far-infrared terahertz time-domain spectroscopy of flames. Opt Lett 1995; 20(15); 1646-1648. DOI: 10.1364/OL.20.001646.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20