Extending the antireflection zone of highly curved optics
Hoang T.L., Gubanova L.A., Nguyen V.B.

 

St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia

Full text of article: Russian language.

 PDF

Abstract:
We propose a method for extending the antireflection zone of highly curved spherical optical components via applying a combined layered coating synthesized in a vacuum chamber with use of a circular diaphragm. The motion path of an arbitrary point on the spherical optical component involved in a dual rotation is numerically simulated and the antireflection zone formed by a combined single-layer coating on the optical component surface is determined.

Keywords:
antireflection coating, highly curved optics, antireflection zone.

Citation:
Hoang TL, Gubanova LA, Nguyen VB. Extending the antireflection zone of highly curved optics. Computer Optics 2017; 41(6): 856-863. DOI: 10.18287/2412-6179-2017-41-6-856-863.

References:

  1. Yang SW, Huang KL, Chen CY, Chang RS. Wide-angle lens design. Classical Optics 2014, OSA Technical Digest (online) 2014: JTu5A.27. DOI: 10.1364/COSI.2014.JTu5A.27.
  2. Herzig HP. Micro-Optics: Elements, Systems and Applications. London, Philadelphia: Taylor & Francis; 1997. ISBN: 978-0748404810.
  3. Guo C, Kong M, He W. Optimization of the spectral performance of an antireflection coating on a micro-spherical substrate. Chin Opt Lett 2016; 14(9): 093101. DOI: 10.3788/COL201614.093101.
  4. Yamamoto K, Yamamoto T, Takaoka T, Seigo M, Kitagawa S. Application of anti-reflection structures on curved surfaces. Proc SPIE 2012; 8255: 82551R. DOI:10.1117/12.906640.
  5. Gharghi M, Sivoththaman S. Design of anti-reflection coating for spherical silicon photovoltaic devices. Proc SPIE 2008; 7045: 704509. DOI: 10.1117/12.795698.
  6. Martinu L, Zabeida O, Amassian A, Larouche S, Lavigne C, Klemberg-Sapieha JE, Morton DE, Zimone F. Plasma deposition of anti-reflective coatings on spherical lenses. Optical Interference Coatings, OSA Technical Digest Series 2001: WA7. DOI: 10.1364/OIC.2001.WA7.
  7. Holland L, Steckelmacher W. The distribution of thin films condensed on surfaces by the vacuum evaporation method. Vacuum 1952; 2(4): 346-364. DOI: 10.1016/0042-207X(52)93784-6.
  8. Kyogoku T, Suzuki T, Mino M. Ion beam assisted deposition of a thin film coating on a gradient-index lens array. Appl Opt 1990; 29(28): 4071-4076. DOI: 10.1364/AO.29.004071.
  9. Oliver JB. Analysis of a planetary-rotation system for evaporated optical coatings. Appl Opt 2016; 55(30): 8550-8555. DOI: 10.1364/AO.55.008550.
  10. Oliver JB. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity. Appl Opt 2017; 56(18): 5121-5124. DOI: 10.1364/AO.56.005121.
  11. Ramprasad BS, Radha TS. Uniformity of film thickness on rotating planetary planar substrates. Thin Solid Films 1973; 15(1): 55-64. DOI: 10.1016/0040-6090(73)90203-4.
  12. Tomofuji T, Okada N, Hiraki S, Murakami A, Nagatsuka J. A new coating technique for lenses which have steep curved surface. Optical Interference Coatings, OSA Technical Digest Series 2001: MD2. DOI: 10.1364/OIC.2001.MD2.
  13. Sun J, Zhang W, Yi K, Shao J. Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system. Chin Opt Lett 2014; 12(5): 053101. DOI: 10.3788/COL201412.053101.
  14. Gubanova LA, Hoang TL. Extending enlightenment area of small-size optical element by coating with a specified thickness distribution [In Russian]. Journal of Instrument Engineering 2016; 59(10): 860-866. DOI: 10.17586/0021-3454-2016-59-10-860-866.
  15. Gubanova LA, Putilin ES. Forming gradient layers on spherical substrates. Journal of Optical Technology. J Opt Technol 2008; 75(4): 278-281. DOI: 10.1364/JOT.75.000278.
  16. Milovanov NP. Synthesis of varied thickness thin-film coatings on a spherical substrate by oblique sputtering [In Russian]. OMP 1987; 5: 27-30.
  17. Gubanova LA, Hoang TL, Do TT. Study of reflection coefficient distribution for anti-reflection coatings on small-radius optical parts [In Russian]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2015; 15(2): 234-240. DOI: 10.17586/2226-1494-2015-15-2-234-240.
  18. Putilin ES, Gubanov LA. Optical coatings [In Russian]. Saint-Petersburg: “LAN” Publisher; 2016.
  19. Gubanova LA, Karasev VB, Putilin ÉS. The use of movable stops when forming layers of variable thickness. J Opt Technol 2003; 70(11): 802-805. DOI: 10.1364/JOT.70.000802.
  20. Baumeister PW. Optical coating technology. Bellingham: SPIE Press; 2004. ISBN: 9780819453136.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20