Multi-spectral image processing for the measurement of a spatial temperature distribution on the surface of a laser-heated microscopic object
Bulatov K.M., Mantrova Y.V., Bykov A.A., Gaponov M.I., Zinin P.V., Machikhin A.S., Troyan I.A., Batshev V.I., Kutuza I.B.

 

Scientific-Technological Center of Unique Instrumentation, Moscow, Russia,
Moscow Power Engineering University, Moscow, Russia,

Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, USA,

FSRC Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia

 PDF

Abstract:
In this paper, we demonstrate that combining a laser heating (LH) system with a tandem acousto-optical tunable filter (TAOTF) allows us to measure the temperature distribution (TD) across a laser-heated microscopic specimen. Spectral image processing is based on one-dimensional (1D) non-linear least squares fitting of the Planck radiation function. It is applied for determining the temperature T at each point (xy) of the specimen surface. It is shown that spectral image processing using the 1D non-linear least squares fitting allows measurement of the TD of the laser-heated microscopic specimen with higher precision and stability than those of the conventional linear least-squares fitting of the Wien approximation of Planck’s law.

Keywords:
laser heating, diamond anvil cell, temperature measurement, acousto-optical tunable filter, spectral imaging.

Citation:
Bulatov KM, Mantrova YV, Bykov AA, Gaponov MI, Zinin PV, Machikhin AS, Troyan IA, Batshev VI, Kutuza IB. Multi-spectral image processing for the measurement of a spatial temperature distribution on the surface of a laser-heated microscopic object. Computer Optics 2017; 41(6): 864-868. DOI: 10.18287/2412-6179-2017-41-6-864-868.

References:

  1. Magunov AN. Spectral pyrometry (Review). Instruments and Experimental Techniques 2009; 52(4): 451-472.
  2. Bassett WA. The birth and development of laser heating in diamond anvil cells. Rev Sci Instrum 2001; 72(2): 1270-1272. DOI: 10.1063/1.1343861.
  3. Zinin PV, Prakapenka VB, Burgess K, Odake S, Chigarev N, Sharma SK. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system. Rev Sci Instrum 2016; 87(12): 123908. DOI: 10.1063/1.4972588.
  4. Burgess K, Prakapenka V, Hellebrand E, Zinin PV. Elastic characterization of platinum/rhodium alloy at high temperature by combined laser heating and laser ultrasonic techniques. Ultrasonics 2014; 54(4): 963-966. DOI: 10.1016/j.ultras.2014.01.011.
  5. Zinin PV, Kudryashov I, Konishi N, Ming LC, Solozhenko VL, Sharma SK. Identification of the diamond-like B-C phases by confocal Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2005; 61(10): 2386-2389. DOI: 10.1016/j.saa.2005.02.017.
  6. Zinin PV, Ming LC, Ishii HA, Jia R, Acosta T, Hellebrand E. Phase transition in BCx system under high-pressure and high-temperature: Synthesis of cubic dense BC3 nanostructured phase. J Appl Phys 2012; 111(11): 114905. DOI: 10.1063/1.4723275.
  7. Machikhin AS, Zinin PV, Shurygin AV, Khokhlov DD. Imaging system based on a tandem acousto-optical tunable filter for in-situ measurements of the high temperature distribution. Opt Lett 2016; 41(5): 901-904. DOI: 10.1364/OL.41.000901.
  8. Prakapenka VB, Kubo A, Kuznetsov A, Laskin A, Shkurikhin A, Dera P, Rivers ML, Sutton SR. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res 2008; 28(3): 225-235. DOI: 10.1080/08957950802050718.
  9. Machikhin AS, Pozhar V, Batshev V. Double-AOTF-Based aberration-free spectral imaging endoscopic system for biomedical applications. J Innov Opt Health Sci 2015; 8(3): 1541009. DOI: 10.1142/S1793545815410096.
  10. Machikhin AS, Shurygin AV, Pozhar VE. Spatial and spectral calibration of an acousto-optical spectrometer. Instrum Exp Tech 2016; 59(5): 692-697. DOI: 10.1134/S0020441216040217.
  11. Kozlova O, Sadouni A, Truong D, Briaudeau S, Himbert M. Tunable transportable spectroradiometer based on an acousto-optical tunable filter: Development and optical performance. Rev Sci Instrum 2016; 87(12): 125101. DOI: 10.1063/1.4968818.
  12. Pozhar V, Machikhin AS. Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals. Appl Opt 2012; 51(19): 4513-4519. DOI: 10.1364/AO.51.004513.
  13. Machikhin AS, Pozhar VE. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave. Quantum Electron 2015; 45(2): 161-165. DOI: 10.1070/QE2015v045n02ABEH015385.
  14. Heinz DL, Sweeney JS, Miller P. A laser heating system that stabilizes and controls the temperature: Diamond anvil cell applications. Rev Sci Instrum 1991; 62(6): 1568-1575. DOI: 10.1063/1.1142434.
  15. Ribaud G. Traité de pyrométrie optique: Encyclopédie photométrique. Paris: Ed De La Revue Optique Theorique Et Instrumentale; 1931.
  16. Heinz DL, Jeanloz R. Temperature measurements in the laser-heated diamond cell. In Book: Manghnani MH, Syono Ya, Eds. High-pressure research in mineral physics: A volume in honor of Syun-iti Akimoto. Washington: American Geophysical Union; 1987: 113-127. DOI: 10.1029/GM039p0113.
  17. Draper NR, Smith H. Applied Regression Analysis. New York: John Wiley & Sons; 1966. ISBN: 0471221708.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20