FPGA-based device for handwritten digit  recognition in images
Zoev I.V., Beresnev A.P., Markov N.G., Malchukov A.N.
   
  National Research Tomsk  Polytechnic University, Tomsk, Russia
Full text of article: Russian language.
  PDF
Abstract:
We describe the design  and manufacture of a mobile and energy efficient device that allows one to  recognize handwritten digits in images using convolutional neural networks. The  device is implemented on a field-programmable gate array (FPGA), which is  included in the system-on-a-chip Cyclone V SX. Functional diagrams of the  computational blocks implementing the convolution and pooling procedures are  developed. Functional diagrams of the convolution neural network for the  proposed architecture are also described. Results of testing the developed  FPGA-based device for its efficiency in terms of handwritten digit recognition  accuracy, recognition rate, and power consumption are presented. Results of a  performance comparison between a hardware and software implementation of convolutional  neural networks are presented.
Keywords:
handwritten digit  recognition in images, convolutional neural networks, FPGA-based device.
Citation:
Zoev IV, Beresnev AP,  Markov NG, Malchukov AN. FPGA-based device for handwritten digit recognition in  images. Computer Optics 2017; 41(6): 938-949. DOI:  10.18287/2412-6179-2017-41-6-938-949.
References:
  - Chatfield K, Simonyan K, Vedaldi A, Zisserman A. Return of the devil in the details:  Delving deep into convolutional nets. Proc of the BMVC 2014. DOI: 10.5244/c.28.6. 
 
  - Russakovsky O, Deng J, Su H, Krause J, Satheesh S,  Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg A C, Fei-Fei L. ImageNet large scale visual recognition challenge. Int J  Comput Vis 2015; 115(3): 211-252. DOI: 10.1007/s11263-015-0816-y. 
 
  - Goyal S, Benjamin P. Object recognition using deep  neural networks: A survey. Source: <https://arxiv.org/pdf/1412.3684.pdf>. 
 
  - LeCun Y, Bottou L, Bengio Y, Haffner P.  Gradient-Based Learning Appelied to Document Recognition. Proc IEEE 1998;  86(11): P.2278-2324. DOI: 10.1109/5.726791. 
 
  - Reshma AJ, James JJ, Kavya M, Saravanan M. An overview  of character recognition focused on off-line handwriting. ARPN Journal of Engineering and Applied Sciences 2016; 11(15):  9372-9378.
 
  - Tuba E, Tuba M, Simian D. Handwritten digit recognition by support  vector machine optimized by bat algorithm. WSCG 2016: 369-376.
 
  - Spitsyn VG, Bolotova YuA, Phan NH, Bui TTT. Using a Haar  wavelet transform, principal component analysis and neural networks for OCR in  the presence of impulse noise [In Russian].  Computer Optics 2016; 40(2): 249-257. DOI: 10.18287/2412-6179-2016-40-2-249-257.
 
  - Elleuch M, Maalej R, Kherallah M. A new design  based-SVM of the CNN classifier architecture with dropout for offline Arabic  handwritten recognition. Proc of the Computer Science. 2016; 80(1): 1712-1723.  – DOI: 10.1016/j.procs.2016.05.512
 
  - Alom MZ, Sidike P, Taha TM, Asari VK. Handwritten  bangla digit recognition using deep learning. Source: <https://arxiv.org/abs/1705.02680>. 
 
  - Maitra  DS, Bhattacharya U, Parui SK. CNN based common approach to handwritten  character recognition of multiple scripts. ICDAR 2015: 1021-1025. DOI:  10.1109/ICDAR.2015.7333916.
 
  - Glauner  PO. Comparison of training methods for deep  neural networks. Source: <https://arxiv.org/pdf/1504.06825.pdf>. 
 
  - Guerra L, McGarry LM, Robles V,  Bielza C, Larra>aga P, Yuste R. Comparison between supervised and unsupervised  classifications of neuronal cell types: a case study. Dev Neurobiol 2011;  71(1): 71-82. DOI: 10.1002/dneu.20809. 
 
  - Bottou  L. Stochastic gradient descent tricks. In Book: Montavon G, Orr GB, Müller KR, eds. Neural  networks: Tricks of the trade. Berlin, Heidelberg: Springer;  2012: 421-436. DOI: 10.1007/978-3-642-35289-8_25.
 
  - LeCun  YA, Bottou L, Orr GB, Müller KR. Efficient BackProb. In Book: Montavon G, Orr  GB, Müller KR, eds. Neural networks: Tricks of the trade. Berlin,  Heidelberg:  Springer; 2012: 9-48. DOI: 10.1007/3-540-49430-8_2.
 
  - Soldatova  OP, Garshin AA. Сonvolutional neural network applied to handwritten  digits recognition [In Russian]. Computer  Optics 2010; 34(2): 252-259.
 
  - El-Sawy  A., Hazem E.L.B., Loey M. CNN for Handwritten Arabic Digits Recognition Based  on LeNet-5. AISI 2016: 566-575. DOI: 10.1007/978-3-319-48308-5_54. 
 
  - SoCKit –  The development kit for new SoC device. Source: <http://www.terasic.com.tw/cgi-bin/page/archive.pl?CategoryNo=167&No=816>.
 
  - Farabet  C, Poulet C, LeCun Y. An FPGA-based stream processor for embedded real-time  vision with convolutional networks. ICCV Workshops 2009: 878-885. DOI: 10.1109/ICCVW.2009.5457611. 
 
  - Zhang C,  Li P, Sun G, Guan Y, Xiao B, Cong J. Optimizing FPGA-based accelerator design  for deep convolutional neural networks. ACM/SIGDA 2015: 161-170. DOI:  10.1145/2684746.2689060. 
 
  - Motamedi  M, Gysel P, Akella V, Ghiasi S. Design space exploration of FPGA-based deep  convolutional neural networks. ASP-DAC 2016; P. 575-580. DOI:  10.1109/ASPDAC.2016.7428073. 
 
  - Krizhevsky  A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional  neural networks. Proceedings  of the 25th International Conference on Neural Information  Processing Systems 2012; 1: 1097-1105. 
 
  - Scherer D, Müller A,  Behnke S. Evaluation of pooling operations in  convolutional architectures for object recognition. In Book: Diamantaras K,  Duch W, Iliadis LS, eds. Artificial Neural Networks – ICANN 2010. Berlin, Heidelberg:  Springer; 2010: 92-101. DOI: 10.1007/978-3-642-15825-4_10.
 
  - The MNIST database of handwritten digits. Source: <http://yann.lecun.com/exdb/mnist>. 
 
  - Bahrampour  S, Ramakrishnan N, Schott L, Shah M. Comparative study of deep learning  software frameworks. Source: <https://arxiv.org/pdf/1511.06435.pdf>. 
 
  - Jia Y,  Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe:  Convolutional architecture for fast feature embedding. Proc of the 22nd  ACM international conference on Multimedia 2014: 675-678. DOI:  10.1145/2647868.2654889. 
 
  - Beresnev AP, Zoev IV.  Methodic of neural network weights transfer from software to hardware  implementation [In Russian]. Trudy XIV Mezhdunarodnoy nauchno-prakticheskoy  konferentsii studentov aspirantov i molodyh uchenyh 2016;  1: 22-23. 
 
  - Glorot  X, Bengio Y. Understanding the difficulty of training deep feedforward neural  networks. AISTATS 2010: 249-256.
 
  - 754-2008: IEEE  standard for floating-point arithmetic. Revision of ANSI/IEEE Std 754-1985. New York: IEEE Publisher, 2008. DOI:  10.1109/IEEESTD.2008.4610935. 
 
  - Zoev IV, Beresnev AP, Mytsko EA, Malchukov AN. Implementation  of 14 bits floating point numbers of calculating units for neural network  hardware development. IOP Conference Series: Materials Science and Engineering  2017; 177(1): 012044. DOI: 10.1088/1757-899X/177/1/012044.
 
  - Tavallaei  S. Microsoft project Olympus hyperscale GPU  accelerator (HGX-1). Source: <https://azure.microsoft.com/mediahandler/files/resourcefiles/00c18868-eba9-43d5-b8c6-e59f9fa219ee/HGX-1%20Blog_5_26_2017.pdf>. 
 
  - S<nchez  OM. Adapting deep neural networks to a low-power  environment. Source: <https://upcommons.upc.edu/bitstream/handle/2117/106673/126470.pdf>. 
 
  - Quartus  II handbook volume 3: Verification. Source: <https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts_qii5v3.pdf>. 
 
  - Half 1.12. IEEE 754-based half-precision floating point library.  Source: <http://half.sourceforge.net/index.html>. 
 
  - NVIDIA:  Caffe. Source: <https://github.com/NVIDIA/caffe>. 
 
  -   Rastegari M, Ordonez V, Redmon J, Farhadi A.  XNOR-Net: ImageNet classification using binary convolutional neural networks.  ECCV 2016: 525-542. DOI: 10.1007/978-3-319-46493-0_32. 
 
  
  © 2009, IPSI RAS
151,  Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7  (846)  242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing   editor), Fax: +7 (846) 332-56-20