On the relation between the propagation constant of Bloch surface waves and the thickness of the upper layer of a photonic crystal
Bezus E.A.
, Bykov D.A., Doskolovich L.L.

 

Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

 PDF

Abstract:
We consider the derivation of a dispersion relation of Bloch surface waves supported by interfaces between a semi-infinite one-dimensional photonic crystal and a homogeneous medium. From the derived dispersion relation, we obtain an explicit analytical expression that defines the relationship between the propagation constant and the thickness of the upper layer of the photonic crystal.

Keywords:
Bloch surface wave, photonic crystal, dispersion relation.

Citation:
Bezus EA, Bykov DA, Doskolovich LL. On the relation between the propagation constant of Bloch surface waves and the thickness of the upper layer of a photonic crystal. Computer Optics 2018; 42(1): 22-27. DOI: 10.18287/2412-6179-2018-42-1-22-27.

References:

  1. Polo JAJ, Lakhtakia A. Surface electromagnetic waves: a review. Laser Photon Rev 2011; 5(2): 234-246. DOI: 10.1002/lpor.200900050.
  2. Yeh P, Yariv A, Hong CS. Electromagnetic propagation in periodic stratified media. I. General theory. JOSA 1977; 67(4): 423-438. DOI: 10.1364/JOSA.67.000423.
  3. Yeh P, Yariv A, Cho AY. Optical surface waves in periodic layered media. Appl Phys Lett 1978; 32(2): 104-105. DOI: 10.1063/1.89953.
  4. Vinogradov AP, Dorofeenko AV, Merzlikin AM, Lisyansky AA. Surface states in photonic crystals. Phys Usp 2010; 53(3): 243-256. DOI: 10.3367/UFNe.0180.201003b.0249.
  5. Vandenbem, C. Electromagnetic surface waves of multilayer stacks: coupling between guided modes and Bloch modes. Opt Lett 2008; 33(19): 2260-2262. DOI: 10.1364/OL.33.002260.
  6. Ramos-Mendieta F, Halevi P. Electromagnetic surface modes of a dielectric superlattice: the supercell method. JOSA B 1997; 14(2): 370-381. DOI: 10.1364/JOSAB.14.000370.
  7. Anopchenko A, Occhicone A, Rizzo R, Sinibaldi A, Figliozzi G, Danz N, Munzert P, Michelotti F. Effect of thickness disorder on the performance of photonic crystal surface wave sensors. Opt Express 2016; 24(7): 7728-7742. DOI: 10.1364/OE.24.007728.
  8. Villa F, Regalado LE, Ramos-Mendieta F, Gaspar-Armenta J, Lopez-Ríos T. Photonic crystal sensor based on surface waves for thin-film characterization. Opt Lett 2002; 27(8): 646-648. DOI: 10.1364/OL.27.000646.
  9. Liscidini M, Sipe JE. Analysis of Bloch-surface-wave assisted diffraction-based biosensors. JOSA B 2009; 26(2): 279-289. DOI: 10.1364/JOSAB.26.000279.
  10. Sinibaldi A, Fieramosca A, Rizzo R, Anopchenko A, Danz N, Munzert P, Magistris C, Barolo C, Michelotti F. Combining label-free and fluorescence operation of Bloch surface wave optical sensors. Opt Lett 2014; 39(10): 2947-2950. DOI: 10.1364/OL.39.002947.
  11. Michelotti F, Rizzo R, Sinibaldi A, Munzert P, Wächter C, Danz N. Design rules for combined label-free and fluorescence Bloch surface wave biosensors. Opt Lett 2017; 42(14): 2798-2801. DOI: 10.1364/OL.42.002798.
  12. Sinibaldi A, Rizzo R, Figliozzi G, Descrovi E, Danz N, Munzert P, Anopchenko A, Michelotti F. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Opt Express 2013; 21(20): 23331-23344. DOI: 10.1364/OE.21.023331.
  13. Yu L, Barakat E, Sfez T, Hvozdara L, Di Francesco J, Herzig HP. Manipulating Bloch surface waves in 2D: a platform concept-based flat lens. Light Sci Appl 2014; 3: e124. DOI: 10.1038/lsa.2014.5.
  14. Yu L, Barakat E, Di Francesco J, Herzig HP. Two-dimen­sional polymer grating and prism on Bloch surface waves platform. Opt Express 2015; 23(25): 31640-31647. DOI: 10.1364/OE.23.031640.
  15. Dubey R, Lahijani BV, Häyrinen M, Roussey M, Kuittinen M, Herzig HP. Ultra-thin Bloch-surface-wave-based reflector at telecommunication wavelength. Photon Res 2017; 5(5): 494-499. DOI: 10.1364/PRJ.5.000494.
  16. Bezus EA, Doskolovich LL, Bykov DA, Soifer VA. Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal. JETP Letters 2014; 99(2): 63-66. DOI: 10.1134/S0021364014020040.
  17. Doskolovich LL, Bezus EA, Bykov DA. Phase-shifted Bragg gratings for Bloch surface waves. Opt Express 2015; 23(21): 27034-27045. DOI: 10.1364/OE.23.027034.
  18. Doskolovich LL, Bezus EA, Bykov DA, Soifer VA. Spatial differentiation of Bloch surface wave beams using an on-chip phase-shifted Bragg grating. J Opt 2016; 18(11): 115006. DOI: 10.1088/2040-8978/18/11/115006.
  19. Chiang KS. Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory. J Lightw Technol 1991; 9(1): 62-72. DOI: 10.1109/50.64924.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20