Self-mixing interferometry for distance measurement using a semiconductor laser with current-modulated wavelength
Usanov D.A., Skripal A.V., Astakhov E.I., Kostuchenko I.S., Dobdin S.Yu.
Saratov State University, Saratov, Russia
PDF
Abstract:
The capabilities of the method of current-modulated laser wavelength are shown to be extended by using harmonic modulation. Advantages of the sawtooth modulation method associated with using the frequency measurements of the interference signal as an information parameter have been researched. Advantages of the harmonic-type modulation based on the use of measurement results for spectral component amplitudes of the interference signal for distance determination have also been investigated. A comparative analysis of methods for absolute distance measurements at the existing capabilities of semiconductor laser wavelength modulation has demonstrated the benefits of the harmonic modulation of laser diode current for distances under 30 cm, showing the sawtooth current modulation to work better for distances greater than 50 cm.
Keywords:
semiconductor laser, self-mixing interferometry, distance measurement, wavelength modulation.
Citation:
Usanov DA, Skripal AV, Astakhov EI, Kostuchenko IS, Dobdin SYu. Self-mixing interferometry for distance measurement using a semiconductor laser with current-modulated wavelength. Computer Optics 2018; 42(1): 54-59. DOI: 10.18287/2412-6179-2018-42-1-54-59.
References:
- Amann MC, Bosch T, Lescure M, Myllylae R, Rioux M. Laser ranging: a critical review of usual technique for distance measurement. Opt Eng 2001; 40(1): 10-19. DOI: 10.1117/1.1330700.
- Sobolev VS, Kascheeva GA. Self-Mixing Frequency-Modulated Laser Interferometry. Optoelectronics, Instrumentation and Data Processing 2008; 44(6): 519-529. DOI: 10.3103/S8756699008060058.
- Usanov DA, Skripal AV. Measurement of micro-and nanovibrations and displacements using semiconductor laser autodynes. Quantum Electronics 2011; 41(1): 86-94. DOI: 10.1070/QE2011v041n01ABEH014386.
- Giuliani G., Norgia M., Donati S., Bosch T. Laser diode self-mixing technique for sensing applications. J Opt A: Pure Appl Opt 2002; 4(6): S283-S294.
- Norgia M, Giuliani G, Donati S. Absolute Distance Measurement With Improved Accuracy Using Laser Diode Self-Mixing Interferometry in a Closed Loop. IEEE Transaction on Instrumentation and Measurement 2007; 56(5): 1894-1900. DOI: 10.1109/TIM.2007.904551.
- Guo D, Wang M. Self-mixing interferometry based on a double modulation technique for absolute distance measurement. Appl Opt 2007; 46(9): 1486-1491. DOI: 10.1364/AO.46.001486.
- Usanov D.A., Skripal A.V., Astakhov E.I. Determination of nanovibration amplitudes using frequency-modulated semiconductor laser autodyne. Quantum Electronics 2014; 44(2): 184-188. DOI: 10.1070/QE2014v044n02ABEH015176.
- Scalise L, Yu Y, Giuliani G, Plantier G, Bosch T. Self-mixing laser diode velocimetry: Application to vibration and velocity measurement. IEEE Transactions on instrumentation and measurement 2004; 53(1): 223-232. DOI: 10.1109/TIM.2003.822194.
- Kane DM, Shore KA. Unlocking dynamical diversity: Optical feedback effects on semiconductor lasers. Chichester: John Wiley and Sons, Ltd.; 2005. ISBN: 978-0-470-85619-2.
- Olesen H, Osmundsen J. H., Trom-borg B. Nonlinear dynamics and spectral behavior for an external cavity laser. IEEE J Quantum Electron 1986; QE-22(6): 762-773. DOI: 10.1109/JQE.1986.1073061.
- Schunk N, Petermann K. Numerical analysis of the feedback regimes for a single-mode semiconductor lasers with external feedback. IEEE J Quantum Electron 1988; 24(7): 1242-1247. DOI: 10.1109/3.960.
- Usanov DA, Skripal AV, Astakhov EI, Dobdin SU. Self-mixing interferometry of distance at wavelength modulation of semiconductor [In Russian]. Izvestiya of Saratov University. New series. Series: Physics 2015; 15(3): 12-18. DOI: 10.18500/1817-3020-2015-15-3-12-18.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20