Bauman MSTU scientific school “Zoom lens design”: features of theory and practice
Rozhkov O.V., Piskunov D.E., Nosov P.A., Pavlov V.Yu., Khorokhorov A.M., Shirankov A.F.

 

Bauman Moscow State Technical University, Moscow, Russia

 PDF

Abstract:
Key theoretical concepts advanced by the Bauman MSTU scientific school 'Zoom lens design' are discussed. These include  methods for design of both classical and laser zoom lenses, systems with linear and nonlinear relations between the displacements of components, basics of professor I. I. Pakhomov's theory of generalized parameters, a method of paraxial synthesis of multicomponent zoom systems, a method of aberration synthesis of zoom systems in the approximation of the third- and fifth-order aberrations. The effectiveness of the described methods is illustrated by examples of designing zoom systems with superior optical characteristics.

Keywords:
optical system, zoom lens, pancratic system, varifocal system, automated design, structural layout, generalized parameters, Chebyshev fractions, Chebyshev polynomials, aberrations, resolution of zoom lens.

Citation:
Rozhkov OV, Piskunov DE, Nosov PA, Pavlov VYu, Khorokhorov AM, Shirankov AF. Bauman MSTU scientific school “Zoom lens design”: features of theory and practice. Computer Optics 2018; 42(1): 72-83. – DOI: 10.18287/2412-6179-2018-42-1-72-83.

References:

  1. Barlow, P. On the principle of construction and general application of the negative achromatic lens to telescopes and eyepieces of every description / P. Barlow // Philosophical Transactions of the Royal Society of London. – 1834. – Vol. 124. – P. 205-207.
  2. Allen CC. Optical objective. Patent US N696788, filed of February 25, 1901, published of April 1, 1902.
  3. Warmisham A, Mitchell RF. The Bell & Howell Cooke varo lens. J SMPE 1932; 19(4): 329-339. DOI: 10.5594/J05480.
  4. Vishnevsky VS, Kavertsev VL,  Kartashev IA, Lavrinenko VV, Nekrasov MM, Prez AA. Piezoelectric motor structures. Pat US 4019073, filed of August 12, 1975, published of April 19, 1977.
  5. Greysukh GI, Ezhov EG, Levin IA, Kalashnikov AV, Stepanov SA. Modeling and investigation superachromatozation refractive and refractive-diffractive optical systems [In Russian]. Computer Optics 2012; 36(3): 395-404.
  6. Greysukh GI, Ezhov EG, Sidyakina ZA, Stepanov SA. Design and analysis of the compact plastic refractive-difractive zoom lens [In Russian]. Computer Optics 2013; 37(2): 208-214.
  7. Pakhomov II. Zoom systems [In Russian]. Moscow, “Mashinostroenie” Publisher; 1976.
  8. Pakhomov II, Rozhkov OV, Rozhdestvin VN. Optoelectronic quantum devices [In Russian]. Moscow: “Radio i Svyaz’” Publisher; 1982.
  9. Pakhomov II, Tsibulya AB. Calculation of the optical systems of laser devices [In Russian]. Moscow: “Radio i Svyaz” Publisher; 1986.
  10. Pakhomov II, Grigor'jants AG, Nosov PA, Shirankov AF, Khorokhorov AM, Pavlov VJu, Tret'jakov RS, Stavertij AJa, Golubenko JuV. Method of varying neck diameter of output laser beam at fixed distance from laser [In Russian]. Pat RF of Invent N 2488861 of July 27, 2013, Russian Bull of Inventions N 21, 2013.
  11. Shirankov AF, Pakhomov II, Ivanov VA, Anikanov AG, Shtykov SA, Nosov PA, Pavlov VJu. Method and device for moving laser beam neck [In Russian]. Pat RF of Invent N 2411598 of February 02, 2011, Russian Bull of Inventions N4, 2011.
  12. Pakhomov II. Calculation of two-component systems of variable magnification [In Russian]. Optical-mechanical industry 1981, 5: 15-19.
  13. Pakhomov I.I. Three-component pancratic systems with mechanical compensation [In Russian]. Optical-mechanical industry 1982, 6: 22-25.
  14. Pakhomov II, Piskunov DE, Khorokhorov AM, Shirankov AF. Automated paraxial zoom lens design [In Russian]. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering 2010; 3(80): 26-41.
  15. Pakhomov II, Piskunov DE, Frolov ME, Khorokhorov AM, Shirankov AF. Automated paraxial zoom lens design [In Russian]. Applied Optics–2010: Proceedings of IX International Conference 2010; 2(II): 316-320.
  16. Hwang G-H, Khorokhorov AM, Pozdnyakov VV, Rozhkov OV, Shirankov AF, Yoon S-I. Aspherical lens and video projector. European Patent EP1400827 of March 24, 2004.
  17. Rozhkov OV, Shirankov AF, Khorokhorov AM, Pozdnyakov VV. Optical system the projection TV [In Russian]. Pat RF of Invent N 2227314 of April 20, 2004, Russian Bull of Inventions N11, 2004.
  18. Verenikina NM, Shirankov AF, Rozhkov OV. Three-fold zoom lens for ultra-compact 5 MPix camera [In Russian]. Applied Optics–2006: Proceedings of VII International Conference 2006; 1: 293-296.
  19. Yoon S-I, Hwang G-H, Shirankov AF, Rozhkov OV, Pozdnyakov VV, Khorokhorov AM. Hibrid lens & projection optical system including the same. Pat US 2004114057 of June 17, 2004.
  20. Seok-il Y, Gyu-hwan H, Shirankov AF, Rozhkov OV, Pozdnyakov VV, Khorokhorov AM. Combined lens and projection optical system having same. Pat CN 1484059 (A) of March 24, 2004.
  21. Pakhomov II, Piskunov DE, Khorokhorov AM. Application of automated paraxial and aberration synthesis technique to the design of 4x zoom lens [In Russian]. Applied Optics-2012: Proceedings of X International Conference 2012; 1: 62-66.
  22. Piskunov DE, Popov MV, Khorokhorov AM. Aberration synthesis of a wide-angle high-speed projection video projector lens [In Russian]. Applied Optics-2012: Proceedings of X International Conference 2012; 3: 35-39.
  23. Piskunov DE. Optical projection system [In Russian]. Pat RF of invent N 2510067 of March 20, 2014, Russian Bull of Inventions N8, 2014.
  24. Pakhomov II, Piskunov DE, Khorokhorov. A numerical method for calculating zoom lens systems with an arbitrary number of moving components [In Russian]. Herald of the Bauman Moscow State Technical University. Instrument Engineering Series 2012; 8(special): 25-35.
  25. Pakhomov II, Piskunov DE, Khorokhorov AM. Design of zoom lens systems with an arbitrary number of moving groups [In Russian]. Applied Optics-2012: Proceedings of X International Conference 2012; 1: 57-61.
  26. Piskunov DE, Khorokhorov AM, Shirankov AF. Up-to-date methods of zoom lens design [In Russian]. Engineering Journal: Science and Innovation 2013; 9. Source: áhttp://engjournal.ru/ catalog/pribor/optica/927.htmlñ.
  27. Piskunov DE. Method of design of high quality zoom lens systems with arbitrary number of moving groups. The thesis for the Candidate’s degree in Technical Sciences. Moscow; 2013.
  28. Piskunov DE, Khorokhorov, Shirankov AF. Method of automated synthesis of zoom lenses in the купшщт of third and fifth order aberrations [In Russian]. Herald of the Bauman Moscow State Technical University. Instrument Engineering Series 2012; 8(special): 36-52.
  29. Pakhomov II, Piskunov DE, Frolov ME, Khorokhorov AM, Shirankov AF. Automated aberration zoom lens design [In Russian]. Applied Optics-2010: Proceedings of IX International Conference 2010; 2: 279-282.
  30. Piskunov DE, Khorohorov AM. Analytical and optimization method of aberration synthesis in optical systems [In Russian]. Science and Education. Scientific edition of Bauman MSTU 2012; 7: 153-162. Source: áhttp://old.technomag.edu.ru/doc/442505.htmlñ. DOI: 10.7463/0712.0442505.
  31. Piskunov DE, Khorokhorov AM. The method of calculating optical systems consisting of an arbitrary number of components [In Russian]. Natural and Technical Sciences 2012; 4: 236-240.
  32. Hamming RW. Numerical methods for scientists and engineers. 2nd ed. New York: Dover Publications, Inc.; 1986. ISBN: 978-0-486-65241-2.
  33. Pakhomov II, Khorkhorov AM. Chebyshev polynomials for synthesis and optimization of optical systems [In Russian]. Herald of the Bauman Moscow State Technical University. Instrument Engineering Series 1995; 3: 69-73.
  34. Anan’ev YuA. Optical cavities and laser beams [In Russian]. Moscow: "Nauka" Publisher; 1990. ISBN: 5-02-014363-4.
  35. Klimkov YuM. Applied laser optics [In Russian]. Moscow: "Mashinostroenie" Publisher; 1985.
  36. Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995. ISBN: 0-521-41711-2.
  37. Anikanov AG, Pakhomov II, Shirankov AF. Structural synthesis of laser optical systems when their parameters are restricted. J Opt Techn 2010; 77(2): 101-106. DOI: 10.1364/JOT.77.000101.
  38. Pakhomov II, Shirankov AF, Nosov PA. Description, calculation, and analysis of the distortions of multimode laser beams. J Opt Techn 2010; 77(2): 107-112. DOI: 10.1364/JOT.77.000107.
  39. Nosov PA, Pavlov VYu, Pakhomov II, Shirankov AF. Aberrational synthesis of optical systems intended for the conversion of laser beams. J Opt Techn 2011; 78(9): 586-593. DOI: 10.1364/JOT.78.000586.
  40. Isaevich AV, Kholenkov AV. Apparatus for determining the spatial characteristics of laser radiation. J Opt Techn 2011; 78(10): 687-691. DOI: 10.1364/JOT.78.000687.
  41. Nosov PA, Shirankov AF, Grigoryants AG, Tret'yakov RS. Investigation of the spatial structure of a high-power fiber laser beam. Journal of Physics: Conference Series 2015; 584(1): 012006. DOI: 10.1088/1742-6596/584/1/012006.
  42. Pakhomov II, Nosov PA. Analysis and synthesis of laser cavities. Journal of Russian Laser Research 2012; 33(5): 409-423. DOI: 10.1007/s10946-012-9297-4.
  43. Nosov PA, Pakhomov II, Shirankov AF. Analysis of multielement laser cavities of an arbitrary configuration. Physics of Wave Phenomena 2011; 19(3): 202-209. DOI: 10.3103/S1541308X11030071.
  44. Nosov PA, Pakhomov II, Shirankov AF. Analysis and synthesis of mirror-lens cavities. J Opt Techn 2010; 77(1): 21-27. DOI: 10.1364/JOT.77.000021.
  45. Nosov PA, Batshev VI. Solid-state laser resonators for varying spatial beam parameters [In Russian]. Applied Physics 2017; 1: 51-57.
  46. Shirankov AF, Pavlov VYu, Shtykov SA, Rozhkov OV, Polkunov VA, Yun YK , Kang VK. Ten-fold ultra-compact varifocal lens with macro-mode [In Russian]. Pat RF of Invent N 2433434 of November 10, 2011, Russian Bull of Inventions N31, 2011.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20