Algebraic models and methods of computer image processing. Part 1. Multiplet models of multichannel images
Labunets V.G., Kokh E.V., Ostheimer E.

 

Ural State Forest Engineering University, Ekaterinburg, Russia,

Capricat LLC, Pompano Beach, Florida, USA

 PDF

Abstract:
We present a new theoretical framework for multichannel image processing using commutative hypercomplex algebras. Hypercomplex algebras generalize the algebras of complex numbers. The main goal of the work is to show that hypercomplex algebras can be used to solve problems of multichannel (color, multicolor, and hyperspectral) image processing in a natural and effective manner. In this work, we suppose that the animal brain operates with hypercomplex numbers when processing multichannel retinal images. In our approach, each multichannel pixel is considered not as an K–D vector, but as an K–D hypercomplex number, where K is the number of different optical channels. The aim of this part is to present algebraic models of subjective perceptual color, multicolor and multichannel spaces.

Keywords:
multichannel images, hypercomplex algebra, image processing.

Citation:
Labunets VG, Kokh EV, Ostheimer E.Algebraic models and methods of computer image processing. Part 1. Multiplet models of multichannel images. Computer Optics 2018; 42(1): 84-95. DOI: 10.18287/2412-6179-2018-42-1-84-95.

References:

  1. Cronin TW, Marschal NJ. A retina with at least ten spectral types of photoreceptors in a mantis shrimp. Nature 1989; 339: 137-140. DOI: 10.1038/339137a0.
  2. Chang Ch-I. Hyperspectral data processing: Algorithm design and analysis. Hoboken, NJ: John Wiley & Sons; 2013. ISBN: 978-0-471-69056-6.
  3. Schowengerdt RA. Remote sensing: Models and methods for image processing. 2nd ed. New York: Academic Press; 1997. ISBN: 978-0-12-628981-7.
  4. Soifer VA, ed. Computer image processing, Part II: Methods and algorithms. Saarbrücken: VDM Verlag Dr. Müller; 2010. ISBN: 978-3-6391-7545-5.
  5. Luneburg RK. The metric of binocular visual space. JOSA 1950; 40(1): 627-642. DOI: 10.1364/JOSA.40.000627.
  6. Luneburg RK. The metric methods in binocular visual space. In book: Courant, R. Studies and essays: presented to R. Courant on his 60th birthday 1948: 215-239.
  7. Labunets V. Clifford algebra as unified language for image processing and pattern recognition. In Book: Byrnes J, Ostheimer G, eds. Computational noncommutative algebra and applications. Dordrecht, Boston, London: Kluwer Academic Publishers; 2004: 197-225. ISBN: 978-1-4020-1982-1.
  8. Doran CJL. Geometric algebra and its application to mathematical physics. Cambridge: University of Cambridge; 1994.
  9. Labunets VG. Is the Brain a ‘Clifford algebra quantum computer’? In Book: Dorst L, Doran C, Lasenby J, eds. Applied geometrical algebras in computer science and engineering. Boston, MA: Birkhäuser; 2002; 25: 486-495. ISBN: 978-1-4612-6606-8. DOI: 10.1007/978-1-4612-0089-5_25.
  10. Labunets-Rundblad EV, Labunets VG, Astola J. Algebra and geometry of color images. In Book: Creutzburg R, Egiazarian K, eds. Proceedings of first international workshop on spectral techniques and logic design for future digital systems. Tampere: TICSP; 2000: 231-261.
  11. Greaves Ch. On algebraic triplets. Proceedings of the Royal Irish Academy 1845; 3: 51-54.
  12. Labunets-Rundblad E, Labunets V. Spatial-color Clifford algebras for invariant image recognition. In Book: Sommer G, ed. Geometric computing with Clifford algebras. Berlin, Heidelberg: Springer; 2001: 155-184. ISBN: 978-3-642-07442-4.
  13. Rundblad-Ostheimer E, Labunets V, Nikitin I. Unified approach to Fourier-Clifford-Prometheus sequences, transforms and filter banks. In Book: Byrnes J, Ostheimer G, eds. Computational noncommutative algebra and applications. Dordrecht, Boston, London: Kluwer Academic Publishers; 2004: 389-400. ISBN: 978-1-4020-1982-1.
  14. Labunets-Rundblad E, Maidan A, Novak P, Labunets V. Fast color Wavelet-Haar-Hartley-Prometheus transforms for image processing. In Book: Byrnes J, Ostheimer G, eds. Computational noncommutative algebra and applications. Dordrecht, Boston, London: Kluwer Academic Publishers; 2004: 401-411. ISBN: 978-1-4020-1982-1.
  15. Labunets V, Labunets-Rundblad E, Astola J. Is the Visual Cortex a ‘Fast Clifford algebra quantum computer’? In Book: Brackx F, Chisholm JSR, Soucek V, eds. Clifford analysis and its applications. Dordrecht: Springer Science+Business Media; 2001: 173-182. ISBN: 978-0-7923-7045-1.
  16. Labunets VG, Maidan A, Labunets-Rundblad E, Astola J. Colour triplet-valued wavelets and splines. Proc ISPA 2001: 535-541. DOI: 10.1109/ISPA.2001.938687.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20