Image synthesis with  neural networks for traffic sign classification
Shakhuro V.I.,  Konushin A.S.
   
  NRU Higher School of Economics, Moscow,  Russia,
 Lomonosov Moscow State  University, Moscow,  Russia
 PDF
  PDF
Abstract:
In this work, we  research the applicability of generative adversarial neural networks for generating  training samples for a traffic sign classification task. We consider generative  neural networks trained using the Wasserstein metric. As a baseline method for  comparison, we take image generation based on traffic sign icons. Experimental  evaluation of the classifiers based on convolutional neural networks is  conducted on real data, two types of synthetic data, and a combination of real  and synthetic data. The experiments show that modern generative neural networks  are capable of generating realistic training samples for traffic sign  classification that outperform methods for generating images with icons, but  are still slightly worse than real images for classifier training. 
Keywords:
traffic  sign classification, synthetic training sample, generative neural network.
Citation:
Shakhuro VI, Konushin   AS. Image synthesis with neural  networks for traffic sign classification. Computer Optics 2018; 42(1): 105-112. DOI:  10.18287/2412-6179-2018-42-1-105-112.
References:
  - Russakovsky O, Deng J, Su H, Krause  J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg A,  Fei-Fei L. ImageNet large scale visual recognition challenge. International  Journal of Computer Vision 2015; 115(3): 211-252. DOI:  10.1007/s11263-015-0816-y.
- Lin T, Maire M, Belongie S, Hays J,  Perona P, Ramanan D, Doll'ar P, Zitnick L. Microsoft COCO: Common objects in  context. In Book: Fleet D, Pajdla T, Schiele B, Tuytelaars T, eds. Computer  Vision – ECCV 2014. Switzerland:  Springer International Publishing; 2014: 740-755. ISBN: 978-3-319-10592-5.
- Cordts M, Omran M, Ramos S, Rehfeld  T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset  for semantic urban scene understanding. Proceedings of the 2016 IEEE Conference  on Computer Vision and Pattern Recognition 2016: 3213-3223. DOI:  10.1109/CVPR.2016.350.
- Shotton J, Sharp T, Kipman A,  Fitzgibbon A, Finocchio M, Blake A, Cook M, Moore R. Real-time human pose  recognition in parts from single depth images. Communications of the ACM 2013;  56(1): 116-124. DOI: 10.1145/2398356.2398381.
- Richter SR, Vineet V, Roth S, Koltun  V. Playing for data: Ground truth from computer games. In book: Leibe B, Matas J, Sebe N, Welling M, eds. Computer Vision – ECCV 2016. Cham, Switzerland: Springer; 2016: 102-118. DOI:  10.1007/978-3-319-46475-6_7.
- Moiseyev B, Konev A, Chigorin A,  Konushin A. Evaluation of traffic sign recognition methods trained on synthetically  generated data. ACIVS 2013: 576-583. DOI: 10.1007/978-3-319-02895-8_52.
- Chigorin A, Konushin A. A system for  large-scale automatic traffic sign recognition and mapping. CMRT13 – City  Models, Roads and Traffic 2013: ISPRS Annals of the Photogrammetry, Remote  Sensing and Spatial Information Sciences 2013; II-3/W3: 13-17. DOI:  10.5194/isprsannals-II-3-W3-13-2013.
- Fischer P, Dosovitskiy A, Ilg E,  Hausser P, Hazirbas C, Golkov V, van der Smagt P, Cremers D, Brox T. Flownet:  Learning optical flow with convolutional networks. arXiv preprint  arXiv:1504.06852 2015.
- Goodfellow I, Pouget-Abadie J, Mirza  M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial  nets. Proc NIPS 2014; 2: 2672-2680.
- Radford A, Metz L, Chintala S.  Unsupervised representation learning with deep convolutional generative adversarial  networks. arXiv preprint arXiv:1511.06434 2015. Source: <https://arxiv.org/abs/1511.06434>. 
- Denton EL, Chintala S, Fergus R.  Deep generative image models using a Laplacian pyramid of adversarial networks.  Proc NIPS 2015; 1: 1486-1494.
- Mirza M, Osindero S. Conditional  generative adversarial nets. arXiv preprint arXiv:1411.1784 2014. Source: <https://arxiv.org/abs/1411.1784>. 
- Zheng Z, Zheng L, Yang Y. Unlabeled  samples generated by GAN improve the person re-identification baseline in  vitro. arXiv preprint arXiv:1701.07717 2017. Source: <https://arxiv.org/abs/1701.07717>. 
- Arjovsky M, Chintala S, Bottou L.  Wasserstein gan. arXiv preprint arXiv:1701.07875 2017. Source: <https://arxiv.org/abs/1701.07875>. 
- Stallkamp J, Schlipsing M, Salmen J,  Igel C. Man vs. computer: Benchmarking machine learning algorithms for traffic  sign recognition. Neural Networks 2012; 32: 323-332. DOI:  10.1016/j.neunet.2012.02.016.
- Shakhuro VI, Konushin AS.  Russian traffic signs images dataset [In Russian]. Computer Optics 2016; 40(2):  294-300. DOI:  10.18287/2412-6179-2016-40-2-294-300. 
- Lisitsyn SO, Bayda OA. Road sign  recognition using support vector machines and histogram of oriented gradients  [In Russian]. Computer Optics 2012; 36(2): 289-295.
-   Ciresan D, Meier U, Masci J, Schmidhuber J.  Multi-column deep neural network for traffic sign classification. Neural  Networks 2012; 32: 333-338. DOI: 10.1016/j.neunet.2012.02.023.  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20