Images analysis for automatic volcano visibility estimation
Kamaev A.N., Urmanov I.P., Sorokin A.A., Karmanov D.A., Korolev S.P.

 

Computing Center FEB RAS, Khabarovsk, Russia

 PDF

Abstract:
In this paper, a method for estimating the volcano visibility in the images is presented.
This method includes algorithms for analyzing parametric edges of objects under observation and frequency characteristics of the images. Procedures for constructing parametric edges of a volcano and their comparison are considered. An algorithm is proposed for identifying the most persistent edges for a group of several reference images. The visibility of a volcano is estimated by comparing these edges to those of the image under analysis. The visibility estimation is maximized with respect to a planar shift and rotation of the camera to eliminate their influence on the estimation. If the image quality is low, making it hardly suitable for further visibility analysis, the estimation is corrected using an algorithm for analyzing the image frequency response represented as a vector of the octave frequency contribution to the image luminance. A comparison of the reference frequency characteristics and the characteristics of the analyzed image allows us to estimate the contribution of different frequencies to the formation of volcano images.
We discuss results of the verification of the proposed algorithms performed using the archive of a video observation system of Kamchatka volcanoes. The estimates obtained corroborate the effectiveness of the proposed methods, enabling the non-informative imagery to be automatically filtered off while monitoring the volcanic activity.

Keywords:
image analysis, algorithms, edge detection, parametric edges, volcano, edge matching, video surveillance, visibility analysis.

Citation:
Kamaev AN, Urmanov IP, Sorokin AA, Karmanov DA, Korolev SP. Images analysis for automatic volcano visibility estimation. Computer Optics 2018; 42(1): 128-140. DOI: 10.18287/2412-6179-2018-42-1-128-140.

References:

  1. Sorokin AA, Korolev SP, Romanova IM, Girina OA, Urmanov IP. The Kamchatka volcano video monitoring system. Proceedings of 2016 6th International Workshop on Computer Science and Engineering (WCSE 2016) 2016; II: 734-737.
  2. Urmanov IP, Kamaev AN, Sorokin AA, Korolev SP. The assessment of the visibility and the status of volcanoes using sequences of video observation images [In Russian] // Computational Technologies 2016; 21(3): 80-90.
  3. Sigg C, Sutter T, Nater F. Camera based visibility estimation. Proc CIMO TECO 2016: P2(64).
  4. Frazor RA, Geisler WS. Local luminance and contrast in natural images. Vision research 2006; 46(10): 1585-1598. DOI: 10.1016/j.visres.2005.06.038.
  5. Caraffa L, Tarel J-Ph. Daytime fog detection and density estimation with entropy minimization. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2014; II-3: 25-31. DOI: 10.5194/isprsannals-II-3-25-2014.
  6. Bronte S, Bergasa LM, Alcantarilla DF. Fog detection system based on computer vision techniques. 12th International IEEE Conference on Intelligent Transportation Systems (ITSC '09) 2009; 12: 3-7. DOI: 10.1109/ITSC.2009.5309842.
  7. Hautiére N, Tarel JP, Lavenant J, Aubert D. Automatic fog detection and estimation of visibility distance through use of an onboard camera. Machine Vision and Applications 2006; 17: 8-20. DOI: 10.1007/s00138-005-0011-1.
  8. Pavlic M, Belzner H, Rigoll G, Ilic S. Image based fog detection in vehicles // 2012 IEEE Intelligent Vehicles Symposium (IV) 2012; 1132-1137. DOI: 10.1109/IVS.2012.6232256.
  9. Aach T, Kaup A. Statistical model-based change detection in moving video. Signal Processing 1993; 31(2): 165-180. DOI: 10.1016/0165-1684(93)90063-G.
  10. Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1999; 2. DOI: 10.1109/CVPR.1999.784637.
  11. Elgammal A, Duraiswami R, Harwood D, Davis LS. Background and foreground modeling using non-para­metric kernel density estimation for visual surveillance // Proc IEEE 2002; 90(7): 1151-1163.
  12. Haritaoglu I, Harwood D, Davis LS. W4: real-time surveillance of people and their activities. Pattern Analysis and Machine Intelligence 2000; 22(8): 809-830. DOI: 10.1109/34.868683.
  13. Kim K, Chalidabhongse TH, Harwood D, Davis L. Real-time foreground-background segmentation using codebook model. Real-Time Imaging 2005; 11(3): 172-185. DOI: 10.1016/j.rti.2004.12.004.
  14. Oliver NM, Rosario B, Pentland AP. A bayesian computer vision system for modeling human interactions // IEEE Transactions on Pattern Analysis and Machine Intelligence 2000; 22(8): 831-843.
  15. Radke RJ, Andra S, Al-Kofahi O, Roysam B. Image change detection algorithms: a systematic survey // IEEE Transactions on Image Processing; 2005; 14(3): 294-307. DOI: 10.1109/TIP.2004.838698.
  16. Benezeth Y, Jodoin P-M, Emile B, Laurent H, Rosenberger Ch. Comparative study of background subtraction algorithms. Journal of Electronic Imaging, Society of Photo-optical Instrumentation Engineers 2010; 19(3). DOI: 10.1117/1.3456695.
  17. Mikolajczyk K, Schmid C. A performance evaluation of local descriptors // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’2003) 2003; 257-263. DOI: 10.1109/CVPR.2003.1211478.
  18. Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2004; 60(2): 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94.
  19. Bay H, Ess A, Tuytelaars T, Van Gool L. SURF: Speeded-up robust features (SURF). Computer Vision and Image Understanding 2008; 110(3): 346-359. DOI: 10.1016/j.cviu.2007.09.014.
  20. Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986; 8(6): 679-698. DOI: 10.1109/TPAMI.1986.4767851.
  21. Elder JH, Zucker SW. Local scale control for edge detection and blur estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998; 20(7): 699-716. DOI: 10.1109/34.689301.
  22. Martin DR, Fowlkes CC, Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004; 26(5): 530-549. DOI: 10.1109/TPAMI.2004.1273918.
  23. Sorokin AA, Korolev SP, Urmanov IP, Verkhoturov AL, Makogonov SV, Shestakov NV. Software platform for observation networks instrumental data Far Eastern Branch of the Russian Academy of Sciences // Proc CSEE 2015; 589-594.
  24. Sorokin AA, Korolev SP, Polyakov AN. Development of information technologies for storage of data of instrumental observation networks of the Far Eastern Branch of the Russian Academy of Sciences. Procedia Computer Science 2015; 66; 584-591. DOI: 10.1016/j.procs.2015.11.066.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20