Transient four-wave mixing in a transparent two-component medium
Ivakhnik V.V., Savelyev M.V.

Samara National Research University, Samara, Russia

 PDF

Abstract:
We analyze changes in the spatial structure of an object wave under four-wave mixing in a transparent two-component medium in schemes with opposing and concurrent pump waves. It is shown that in the spatial spectrum of the object wave there is a dip, whose position is determined by the propagation direction of the second pump wave. Angular rotation and frequency shift of the pump waves lead to a decrease in the conversion efficiency of high spatial frequencies. The bandwidth of the spatial frequencies cut out by the four-wave radiation converter decreases monotonically over time, whereas the bandwidth of the most efficiently converted spatial frequencies increases.

Keywords:
four-wave radiation converter, phase conjugation, transparent two-component medium.

Citation:
Ivakhnik VV, Savelyev MV. Transient four-wave mixing in a transparent two-component medium. Computer Optics 2018; 42(2): 227-235. DOI: 10.18287/2412-6179-2018-42-2-227-235.

References:

  1. Lopez-Mariscal C, Gutierrez-Vega JC, McGloin D, Dholakia K. Direct detection of optical phase conjugation in a colloidal medium. Opt Express 2007; 15(10): 6330-6335. DOI: 10.1364/OE.15.006330.
  2. Freysz E, Laffon E, Ducasse A. Phase conjugation used as a test of the local and nonlocal characteristics of optical nonlinearities in microemulsions. Opt Lett 1991; 16(21): 1644-1646. DOI: 10.1364/OL.16.001644.
  3. Neimontas K, Malinauskas T, Aleksiejunas R, Yakimova R, Jarasiunas K. Temperature-dependent nonequilibrium carrier dynamics in epitaxial and bulk 4H-SiC. Lithuanian Journal of Physics 2006; 46(2): 199-204.
  4. Lee K-H, Pai C-H, Lin M-W, Ha L-C, Lin J-Y, Wang J, Chen S-Y. Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings. Phys Rev E 2007; 75(3): 036403. DOI: 10.1103/PhysRevE.75.036403.
  5. Masia F, Moreels I, Hens Z, Langbein W, Borri P. Four-wave-mixing imaging and carrier dynamics of PbS colloidal quantum dots. Phys Rev B 2010; 82(15): 155302. DOI: 10.1103/PhysRevB.82.155302.
  6. Li J-B, He M-D, Chen L-Q. Four-wave parametric amplification in semiconductor quantum dot-metallic nanoparticle hybrid molecules. Opt Express 2014; 22(20): 24734-24741. DOI: 10.1364/OE.22.024734.
  7. Smith PW, Ashkin A, Tomlinson WJ. Four-wave mixing in an artificial Kerr medium. Opt Lett 1981; 6(6): 284-286. DOI: 10.1364/OL.6.000284.
  8. Afanas’ev AA, Rubinov AN, Mikhnevich SYu, Ermolaev IE. Four-wave mixing in a liquid suspension of transparent dielectric microspheres. JETP 2005; 101(3): 389-400. DOI: 10.1134/1.2103207.
  9. Livashvili AI, Kostina GV, Yakunina MI. Temperature dynamics of a transparent nanoliquid acted on by a periodic light field. J Opt Tech 2013; 80(2): 124-126. DOI: 10.1364/JOT.80.000124.
  10. Ivanov VI, Okishev KN. Thermodiffusion mechanism of dynamic amplitude hologram recording in a two-component medium. Tech Phys Lett 2006; 32(11): 967-968. DOI: 10.1134/S1063785006110186.
  11. Ivanov VI, Ivanova GD, Kirjushina SI, Mjagotin AV. Microgeterogeneous media for dynamic holography [In Russian]. Proceedings of higher educational institutions. Physics 2015; 58(11/3): 153-156.
  12. Smith PW, Maloney PJ, Ashkin A. Use of a liquid suspension of dielectric spheres as an artificial Kerr medium. Opt Lett 1982; 7(8): 347-349. DOI: 10.1364/OL.7.000347.
  13. Kovalenko KV, Krivokhizha SV, Rzhepkovslij NV, Chajkov LL. Method of measuring particle size of suspensions and four-wave mixing laser to this end [In Russian]. Pat RF of Invent N 2422806 of July 26, 2011, Russian Bull of Inventions N18, 2011.
  14. Ivakhnik VV. Wavefront reversal and four-wave interaction [In Russian]. Samara: Samara State University Publisher; 2010. ISBN 978-5-86465-471-2.
  15. Vorobyeva EV, Ivakhnik VV, Savelyev MV. Spatial and temporal characteristics of a four-wave radiation converter in a transparent medium based on electrostriction and Dufour effect [In Russian]. Computer Optics 2014; 38(2): 223-228.
  16. Ivakhnik VV, Savelyev MV. Spatial and temporal characteristics of a nondegenerate four-wave radiation converter in a transparent medium based on electrostriction and Dufour effect [In Russian]. Computer Optics 2015; 39(4): 486-491. DOI: 10.18287/0134-2452-2015-39-4-486-491.
  17. Ivakhnik VV, Savelyev MV. Spatial selectivity of the four-wave radiation converter in a transparent two-component medium in a scheme with concurrent pump waves [In Russian]. Computer Optics 2016; 40(3): 322-330. DOI: 10.18287/2412-6179-2016-40-3-322-330.
  18. Ivakhnik VV, Savel’ev MV. Degenerate four-wave mixing in transparent two-component medium considering spatial structure of the pump waves. J Phys: Conf Ser 2016; 737(1): 012007. DOI: 10.1088/1742-6596/737/1/012007.
  19. Akimov AA, Vorobeva EV, Ivakhnik VV. The time response of a four-wave converter of radiation on thermal nonlinearity [In Russian]. Computer Optics 2011; 35(4): 462-466.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20