Rotation of two-petal laser beams in the near field of a spiral microaxicon
Stafeev S.S., O'Faolain L., Kotlyar M.V.

 

Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia,
Cork Institute of Technology, Ireland

 PDF

Abstract:
Using a spiral microaxicon with the topological charge 2 and NA = 0.6 operating at a 532-nm wavelength and fabricated by electron-beam lithography, we experimentally demonstrate the rotation of a two-petal laser beam in the near field (several micrometers away from the axicon surface). The estimated rotation rate is 55 °/mm and linearly dependent on the on-axis distance, with the theoretical rotation rate being 53 °/mm. The experimentally measured rotation rate is found to be linear and coincident with the simulation results only on the on-axis segment from 1.5 to 3 mm. The experimentally measured rotation rate is 66 °/mm on the initial on-axis segment from 0 to 1.5 mm and 34 °/mm on the final segment of the beam path from 3 to 4.5 mm. The experimentally achieved rotation rate is higher than rotation rates of similar two-petal laser beams reported to date.

Keywords:
binary optics, near field microscopy, optical vortex, rotating beams.

Citation:
Stafeev SS, O'Faolain L, Kotlyar MV. Rotation of two-petal laser beams in the near field of a spiral microaxicon. Computer Optics 2018; 42 (3): 385-391. DOI: 10.18287/2412-6179-2018-42-3-385-391.

References:

  1. Backlund MP, Lew MD, Backer AS, Sahl SJ, Grover G, Agrawal A, Piestun R, Moerner WE. The double-helix point spread function enebles precise and accurate measurement of 3D single0molecule localization and orientation. Proc SPIE 2013; 8590: 85900L. DOI: 10.1117/12.2001671.
  2. Lavery MPJ, Peuntinger C, Gunthner K, Banzer P, Elser D, Boyd RW, Padgett MJ, Marquardt C, Leuchs G. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci Adv 2017; 3(10): e1700552. DOI: 10.1126/sciadv.1700552.
  3. Morgan KS, Miller JK, Cochennour BM, Li W, Li Y, Watkins RJ, Johnson EG. Free space propagation of concentric vortices through underwater turbid environments. J Opt 2016; 18: 104004. DOI: 10.1088/2040-8978/18/10/104004.
  4. Yu S, Pung F, Liu H, Li X, Yang J, Wang T. Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic field sensing. Appl Phys Lett 2017; 111(9): 091107. DOI: 10.1063/1.4989651.
  5. Abramochkin E, Volostnikov V. Spiral-type beams. Opt Commun 1993; 102(1-3): 336-350. DOI: 10.1016/0030-4018(93)90406-U.
  6. Schechner, YY, Piestun R, Shamir J. Wave propagation with rotating intensity distributions. Phys Rev E 1996; 54(1): R50-R53. DOI: 10.1103/PhysRevE.54.R50.
  7. Pääkkönen P, Lautanen J, Honkanen M, Kuittinen M, Turunen J, Khonina SN, Kotlyar VV, Soifer VA, Friberg AT. Rotating optical fields: experimental demonstration with diffractive optics. J Mod Opt 1998; 45(11): 2355-2369. DOI: 10.1080/09500349808231245.
  8. Greengard A, Schechner YY, Piestun R. Depth from diffracted rotation. Opt Lett 2006; 31(2): 181-183. DOI: 10.1364/OL.31.000181.
  9. Pavani SRP, Piestun R. High-efficiency rotating point spread functions. Opt Express 2008; 16(5): 3484-3489. DOI: 10.1364/OE.16.003484.
  10. Rop R, Litvin IA, Forbes A. Generation and propagation dynamics of obstructed and unostructed rotating orbital angular momentum-carrying Helicon beams. J Opt 2012; 14(3): 035702. DOI: 10.1088/2040-8978/14/3/035702.
  11. Schulze C, Roux FS, Dudley A, Rop R, Duparré M, Forbes A. Accelerated rotation with orbital angular momentum modes. Phys Rev A 2015; 91(4): 043821. DOI: 10.1103/PhysRevA.91.043821.
  12. Wang H, Rui G, Zhan Q. Dynamic propagation of optical vortices embedded in full Poincaré beams with rotationally polarization symmetry. Opt Commun 2015; 351: 15-25. DOI: 10.1016/j.optcom.2015.04.040.
  13. Khan SN, Chatterjee SK, Chaudhuri PR. Polarization and propagation characteristics of switchable first-order azimuthally asymmetric beam generated in dual-mode fiber. Appl Opt 2015; 54(6): 1528-1536. DOI: 10.1364/AO.54.001528.
  14. Kotova SP, Losevsky NN, Prokopova DP, Samagin SA, Volostnikov VG, Vorontsov EN. Aberration influenced generation of rotating two-lobe light fields. J Phys: Conf Ser 2016; 740(1): 012013. DOI: 10.1088/1742-6596/740/1/012013.
  15. Volostnikov VG, Vorontsov EN, Kotova SP, Losevsky NN, Prokopova DV, Razueva EV, Samagin SA. Generation of two-lobe light fields with a rotating intensity distribution under propagation for single emitter spectroscopy. EPJ Web of Conf 2017; 132: 02012. DOI: 10.1051/epjconf/201713202012.
  16. Degtyarev SA, Porfirev AP, Khonina SN. Photonic nanohelix generated by a binary spiral axicon. Appl Opt 2016; 55(12): 44-48. DOI: 10.1364/AO.55.000B44.
  17. Kotlyar VV, Khonina SN, Skidanov RV, Soifer VA. Rotation of laser beams with zero of the orbital angular momentum. Opt Commun 2007; 274(1): 8-14. DOI: 10.1016/j.optcom.2007.01.059.
  18. Born M, Wolf E. Principles of Optics: Electromagnetic theory of propagation, interference and diffraction of light. 4st ed. Oxford: Pergamon Press; 1970.
  19. Khonina SN, Kotlyar VV, Soifer VA, Shinkaryev MV, Uspleniev GV. Trochoson. Opt Commun 1992; 91(3-4): 158-162. DOI: 10.1016/0030-4018(92)90430-Y.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20