The near-axis backflow of energy in a tightly focused optical vortex with circular polarization
Kotlyar V.V., Nalimov A.G., Stafeev S.S.

 

Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

 PDF

Abstract:
Using the Richards-Wolf formulae for a diffractive lens, we show that in the focal plane of a sharply focused left-hand circularly polarized optical vortex with the topological charge 2 there is an on-axis backflow of energy (as testified by the negative axial projection of the Poynting vector). The result is corroborated by the FDTD-aided rigorous calculation of the diffraction of a left-hand circularly polarized plane wave by a vortex zone plate with the topological charge 2 and the NA≈1. Moreover, the back- and direct flows of energy are comparable in magnitude. We have also shown that while the backflow of energy takes place on the entire optical axis, it has a maximum value in the focal plane, rapidly decreasing with distance from the focus. The length of a segment along the optical axis at which the modulus of the backflow drops by half (the depth of backflow) almost coincides with the depth of focus, and the transverse circle in which the energy flow is reversed roughly coincides with the Airy disk.

Keywords:
Poynting vector, Richards-Wolf formulae, FDTD-method, optical vortex, tractor beam.

Citation:
Kotlyar VV, Nalimov AG, Stafeev SS. The near-axis backflow of energy in a tightly focused optical vortex with circular polarization. Computer Optics 2018; 42(3): 392-400. DOI: 10.18287/2412-6179-2018-42-3-392-400.

References:

  1. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  2. Ignatovsky VS. Diffraction by a lens having arbitrary opening. Transactions of the Optical Institute in Petrograd 1920; 1: 4.
  3. Ganic D, Gan X, Gu M. Focusing of doughnut laser beams by a high numerical-aperture objective in free space. Opt Express 2003; 11(21): 2747-2752. DOI: 10.1364/OE.11.002747.
  4. Bokor N, Iketaki Y, Watanabe T, Fujii M. Investigation of polarization effects for high-numerical- aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead. Opt Express 2005; 13(26): 10440-10447.
  5. Maluenda D, Matinez-Herrero R, Juvells I, Carnicer A. Synthesis of highly focused fields with circular polarization at any transverse plane. Opt Express 2014; 22(6): 6859-6867. DOI: 10.1364/OE.22.006859.
  6. Chen B, Pu J. Tight focusing of elliptically polarized vortex beams. Appl Opt 2009; 48(7): 1288-1294. DOI: 10.1364/AO.48.001288.
  7. Zang M, Yang Y. Tight focusing properties of anomalous vortex beams. Optik 2018; 154: 133-138. DOI: 10.1016/j.ijleo.2017.10.013.
  8. Nie Z, Shi G, Li D, Zhang X, Wang Y, Song Y. Tight focusing of a radially polarized Laguerre-Bessel-Gaussian beam and its application to manipulation of two type of particles. Phys Lett A 2015; 379(9): 857-863. DOI: 10.1016/j.physleta.2014.11.029.
  9. Zhang X, Chen R, Wang A. Focusing properties of cylindrical vector vortex beams. Opt Commun 2018; 414: 10-15. DOI: 10.1016/j.optcom.2017.12.076.
  10. Zhao X, Pang X, Zhang J, Wan G. Transverse focal shift in vortex beams. IEEE Photon J 2018; 10(1): 6500417. DOI: 10.1109/JPHOT.2018.2795597.
  11. Novitsky AV, Novitsky DV. Negative propagation of vector Bessel beams. JOSA A 2007; 24(9): 2844-2849. DOI: 10.1364/JOSAA.24.002844.
  12. Monteiro PB, Neto PAM, Nussenzveig HM. Angular momentum of focused beams: Beyond the paraxial approximation. Phys Rev A 2009; 79(3): 033830. DOI: 10.1103/PhysRevA.79.033830.
  13. Sukhov S, Dogariu A. On the concept of "tractor beams". Opt Lett 2010; 35(22): 3847-3849. DOI: 10.1364/OL.35.003847.
  14. Novitsky A, Qiu C, Wang H. Single gradientless light beam drags particles as tractor beams. Phys Rev Lett 2011; 107(20): 203601. DOI: 10.1103/PhysRevLett.107.203601.
  15. Sukhov S, Dogariu A. Negative nonconservative forces: optical "tractor beams" for arbitrary objects. Phys Rev Lett 2011; 107(20): 203602. DOI: 10.1103/PhysRevLett.107.203602.
  16. Saenz JJ. Laser tractor beams. Nat Photon 2011; 5: 514-515. DOI: 10.1038/nphoton.2011.201.
  17. Dogariu A, Sukhov S, Saenz JJ. Optically induced 'negative forces'. Nat Photon 2012; 7: 24-27. DOI: 10.1038/nphoton.2012.315.
  18. Kajorndejnukul V, Ding W, Sukhov S, Qiu C, Dogariu A. Linear momentum increase and negative optical forces at dielectric interface. Nat Photon 2013; 7: 787-790. DOI: 10.1038/nphoton.2013.192.
  19. Shvedov V, Davoyan AR, Hnatovsky C, Engheta N, Krolikowski W. A long-range polarization-controlled optical tractor beam. Nat Photon 2014; 8: 846-850. DOI: 10.1038/nphoton.2014.242.
  20. Carretero L, Acebal P, Garcia C, Blaya S. Periodic trajectories obtained with an active tractor beam using azimuthal polarization: design of particle exchanger. IEEE Photon J 2015; 7: 3400112. DOI: 10.1109/JPHOT.2015.2402123.
  21. Mitri FG. Optical Bessel tractor beam on active dielectric Rayleigh prolate and oblate spheroids. JOSA B 2017; 34(5): 899-908. DOI: 10.1364/JOSAB.34.000899.
  22. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens [In Russian]. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  23. Davidson N, Bokor N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt Lett 2004; 29(12): 1318-1320. DOI: 10.1364/OL.29.001318.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20