Comparison of focusing of short pulses in the Debye approximation
Khonina S.N., Ustinov A.V., Volotovsky S.G.

 

Image Processing Systems Institute of RAS – Branch of the FSRC "Crystallography and Photonics" RAS, Samara, Russia,

Samara National Research University, Samara, Russia

 PDF

Abstract:
We have examined different types of pulses and features of their frequency spectra. Calculations have shown that a significant distinction between the pulses only takes place at a very short pulse duration (shorter than the oscillation period). In this case, the Gaussian pulse becomes nonphysical and one needs to use other types of pulses, for example, the Poisson pulse. We performed comparative modeling of focusing of short pulses by an aplanatic lens for different polarization states and vortex singularity orders in the Debye approximation. We have shown that the polarization state and the presence of vortex phase singularity essentially affect the distribution in the focal area for a subcycle Poisson pulse.

Keywords:
short pulses, frequency spectrum, pulses focusing, tight focusing, aplanatic lens, Debye approximation.

Citation:
Khonina SN, Ustinov AV, Volotovsky SG. Comparison of focusing of short pulses in the Debye approximation. Computer Optics 2018; 42(3): 432-446. DOI: 10.18287/2412-6179-2018-42-3-432-446.

References:

  1. Wright LG, Christodoulides DN, Wise FW. Controllable spatiotemporal nonlinear effects in multimode fibres. Nature Photonics 2015; 9: 306-310. DOI: 10.1038/nphoton.2015.61.
  2. Liu W, Pang L, Han H, Tian W, Chen H, Lei M, Yan P, Wei Z. 70-fs mode-locked erbium-doped fiber laser with topological insulator. Scientific Reports 2016; 6: 19997. DOI: 10.1038/srep19997.
  3. Danson C, Hillier D, Hopps N, Neely D. Petawatt class lasers worldwide. High Power Laser Science and Engineering 2015; 3: E3. DOI: 10.1017/hpl.2014.52.
  4. Bevzenko IG. Investigation of the behavior of ultrashort pulses in multiwire structures with inhomogeneous dielectric filling (In Russian). SPbSPU Journal. Computer Science. Telecommunication and Control Systems 2016; 252(4): 7-18. DOI: 10.5862/JCSTCS.252.1.
  5. April A. Ultrashort, strongly focused laser pulses in free space. In Book: Duarte FJ, ed. Coherence and ultrashort pulse laser emission. Chapter 16. InTech; 2010: 355-382. ISBN: 978-953-307-242-5.
  6. Wong LJ, Kärtner FX, Johnson SG. Improved beam waist formula for ultrashort, tightly-focused linearly, radially, and azimuthally polarized laser pulses in free space. Opt Lett 2014; 39(5): 1258-1261. DOI: 10.1364/OL.39.001258.
  7. Li X, Salamin YI, Hatsagortsyan KZ, Keitel CH. Fields of an ultrashort tightly focused laser pulse. JOSA B 2016; 33(3): 405-416. DOI: 10.1364/JOSAB.33.000405.
  8. Feng S. Winful HG. Spatiotemporal structure of isodiffracting ultrashort electromagnetic pulses. Phys Rev E 2000; 61(1): 862-873. DOI: 10.1103/PhysRevE.61.862.
  9. Porras MA. Nonsinusoidal few-cycle pulsed light beams in free space. JOSA B 1999; 16(1): 1468-1474. DOI: 10.1364/JOSAB.16.001468.
  10. Khonina SN, Golub I. Ultrafast rotating dipole or propeller-shaped patterns: subwavelength shaping of a beam of light on a femtosecond time scale. Opt Lett 2016; 41(7): 1605-1607. DOI: 10.1364/OL.41.001605.
  11. Khonina SN, Golub I. Time behavior of focused vector beams. JOSA A 2016; 33(10): 1948-1954. DOI: 10.1364/JOSAA.33.001948.
  12. Venkatakrishnanetal T, Tan B. Interconnect microvia drilling with a radially polarized laser beam. J Micromech Microeng 2006; 16(12): 2603. DOI: 10.1088/0960-1317/16/12/013.
  13. Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N, Morita R. Metal microneedle fabrication using twisted light with spin. Opt Express 2010; 18(17): 17967-17973. DOI: 10.1364/OE.18.017967.
  14. Hnatovsky C, Shvedov VG, Krolikowski W, Rode AV. Materials processing with a tightly focused femtosecond laser vortex pulse. Opt Lett 2010; 35(20): 3417-3419. DOI: 10.1364/OL.35.003417.
  15. Cheng J, Liu C, Shang S, Liu D, Perrie W, Dearden G, Watkins K. A review of ultrafast laser materials micro-machining. Opt Laser Technol 2013; 46: 88-102. DOI: 10.1016/j.optlastec.2012.06.037.
  16. Zayarny DA, Ionin AA, Kudryashov SI, Makarov SV, Rudenko AA, Bezhanov SG, Uryupin SA, Kanavin AP, Emel’yanov VI, Alferov SV, Khonina SN, Karpeev SV, Kuchmizhak AA, Vitrik OB and KulchinYuN. Nanoscale boiling during single-shot femtosecond laser ablation of thin gold films. JETP Letters 2015; 101(6): 394-397. DOI: 10.1134/S0021364015060132.
  17. Syubaev S, Zhizhchenko A, Kuchmizhak A, Porfirev A, Pustovalov E, Vitrik O, Kulchin Yu, Khonina S, Kudryashov S. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt Express 2017; 25(9): 10214-10223. DOI: 10.1364/OE.25.010214.
  18. Saito Y, Kobayashi M, Hiraga D, Fujita K, Kawano S, Smith NI, Inouye Y, Kawata S. z-Polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light. Journal of Raman Spectroscopy 2008; 39(11): 1643-1648. DOI: 10.1002/jrs.1953.
  19. Chen Y-H, Varma S, Antonsen TM. Milchberg HM. Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments. Phys Rev Lett 2010; 105: 215005. DOI: 10.1103/PhysRevLett.105.215005.
  20. Belgiorno F, Cacciatori SL, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino E, Sala VG, Faccio D. Hawking radiation from ultrashort laser pulse filaments. Phys Rev Lett 2010; 105: 203901. DOI: 10.1103/PhysRevLett.105.203901.
  21. Okamuro K, Hashida M, Miyasaka Y, Ikuta Y, Tokita S, Sakabe S. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys Rev B 2010; 82(16): 165417. DOI: 10.1103/PhysRevB.82.165417.
  22. Zimmermann F, Plech A, Richter S, Tünnermann A, Nolte S. Ultrashort laser pulse induced nanogratings in borosilicate glass. Appl Phys Lett 2014; 104(21): 211107. DOI: 10.1063/1.4880658.
  23. Kuchmizhak A, Pustovalov E, Syubaev S, Vitrik O, Kulchin Y, Porfirev A, Khonina S, Kudryashov SI, Danilov P, Ionin A. On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications. ACS Appl Mater Interfaces 2016; 8(37): 24946-24955. DOI: 10.1021/acsami.6b07740.
  24. Kuchmizhak AA, Porfirev AP, Syubaev SA, Danilov PA, Ionin AA, Vitrik OB, Kulchin YuN, Khonina SN, Kudryashov SI. Multi-beam pulsed-laser patterning of plasmonic films using broadband diffractive optical elements. Opt Lett 2017; 42(14): 2838-2841. DOI: 10.1364/OL.42.002838.
  25. Syubaev S, Porfirev A, Zhizhchenko A, Vitrik O, Kudryashov S, Fomchenkov S, Khonina S, Kuchmizhak A. Zero-orbital-angular-momentum laser printing of chiral nanoneedles. Opt Lett 2017; 42(23): 5022-5025. DOI: 10.1364/OL.42.005022.
  26. Agate B, Brown CTA, Sibbett W, Dholakia K. Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt Express 2004; 12(13): 3011-3017. DOI: 10.1364/OPEX.12.003011.
  27. Wang L-G, Zhao C-L. Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere. Opt Express 2007; 15(17): 10615-10621. DOI: 10.1364/OE.15.010615.
  28. Caron CFR, Potvliege RM. Free-space propagation of ultrashort pulses: space-time couplings in Gaussian pulse beams. J Mod Opt 1999; 46(13): 1881-1891. DOI: 10.1080/09500349908231378.
  29. April A. Tightly focused, ultrafast TM01 laser pulses. Proc SPIE 2009; 7386: 73862X. DOI: 10.1117/12.838383.
  30. Ziolkowski RW. Localized transmission of electromagnetic energy. Phys Rev A 1989; 39: 2005-2033. DOI: 10.1103/PhysRevA.39.2005.
  31. Cai X-M, Zhao J-Y, Lin Q, Luo J-L. Electron acceleration by subcycle pulsed focused vector beams. JOSA B 2016; 33(2): 158-164. DOI: 10.1364/JOSAB.33.000158.
  32. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. // Proceedings of the Royal Society A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  33. Miloševic DB, Paulus GG, Bauer D, Becker W. Above-threshold ionization by few-cycle pulses. J Phys B: At Mol Opt Phys 2006; 39(14): R203-R262. DOI: 10.1088/0953-4075/39/14/R01.
  34. Yashunin DA, Malkov YuA, Bodrov SB. The femtosecond optics. Educational and methodical textbook [In Russian]. Nizhny Novgorod: "Nizhny Novgorod State University" Publisher; 2014.
  35. Khonina SN. Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions. Optical Engineering 2013; 52(9): 091711. DOI: 10.1117/1.OE.52.9.091711.
  36. Feng S, Winful HG, Hellwarth RW. Gouy shift and temporal reshaping of focused single-cycle electromagnetic pulses. Optics Letters 1998; 23(5): 385-387. DOI: 10.1364/OL.23.000385.
  37. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Phys Rev Lett 2003; 91(23): 233901. DOI: 10.1103/PhysRevLett.91.233901.
  38. Khonina SN, Golub I. Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation. JOSA A 2012; 29(7): 1470-1474. DOI: 10.1364/JOSAA.29.001470.
  39. Huse N, Schönle A, Hell SW. Z-polarized confocal microscopy. J Biomed Opt 2001; 6(3): 273-276. DOI: 10.1117/1.1382610.
  40. Pereira SF, van de Nes AS. Superresolution by means of polarisation, phase and amplitude pupil masks. Opt Commun 2004; 234(1-6): 119-124. DOI: 10.1016/j.optcom.2004.02.020.
  41. Khonina SN, Golub I. Optimization of focusing of linearly polarized light. Opt Lett 2011; 36(3): 352-354. DOI: 10.1364/OL.36.000352.
  42. Saari P, Sonajalg H. Pulsed Bessel beams. Laser Physics 1997; 7(1): 32-39.
  43. Sheppard CJR. Bessel pulse beams and focus wave modes. JOSA A 2001; 18(10): 2594-2600. DOI: 10.1364/JOSAA.18.002594.
  44. Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. J Opt 2013; 15(8): 085704. DOI: 10.1088/2040-8978/15/8/085704.
  45. Khonina SN, Nesterenko DV, Morozov AA, Skidanov RV, Soifer VA. Narrowing of a light spot at diffraction of linearly-polarized beam on binary asymmetric axicons. Optical Memory and Neural Networks (Information Optics) 2012; 21(1): 17-26. DOI: 10.3103/S1060992X12010043.
  46. Khonina SN, Kazanskiy NL, Volotovsky SG. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system. J Mod Opt 2011; 58(9): 748-760. DOI: 10.1080/09500340.2011.568710.
  47. Khonina SN, Golub I. Tighter focus for ultrashort pulse vector light beams: change of the relative contribution of different field components to the focal spot upon pulse shortening. J Opt Soc Am A 2018; 35(6): 985-991. DOI: https://doi.org/10.1364/JOSAA.35.000985.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20