Observation of an optical "angular tractor" effect in a Bessel beam
Kotlyar V.V., Kovalev A.A., Porfirev A.P.

 

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF

Abstract:
We study an optical “angular tractor” effect, at which the energy flow in the cross-section of a rotationally symmetric vortex laser beam with the positive/negative topological charge and left-/right-handed circular polarization rotates in different directions (clockwise and counterclockwise) at different distances from the beam center. This effect is shown to take place both for paraxial vortex beams and in the focus of an aplanatic system focusing a nonparaxial optical vortex. Dielectric microparticles placed in a third-order circularly polarized Bessel beam are experimentally demonstrated to move in the opposite directions (clockwise and counterclockwise).

Keywords:
optical “angular tractor”, energy flow, Bessel beam.

Citation:
Kotlyar VV, Kovalev AA, Porfirev AP. Observation of an optical “angular tractor” effect in a Bessel beam. Computer Optics 2018; 42(4): 550-556. DOI: 10.18287/2412-6179-2018-42-4-550-556.

References:

  1. Sukhov S, Dogariu A. On the concept of “tractor beams”. Opt Lett 2010; 35(22): 3847-3849. DOI: 10.1364/OL.35.003847.
  2. Novitsky A, Qiu C, Wang H. Single gradientless light beam drags particles as tractor beams. Phys Rev Lett 2011; 107(20): 203601. DOI: 10.1103/PhysRevLett.107.203601.
  3. Sukhov S, Dogariu A. Negative nonconservative forces: optical “tractor beams” for arbitrary objects. Phys Rev Lett 2011; 107(20): 203602. DOI: 10.1103/PhysRevLett.107.203602.
  4. Saenz JJ. Laser tractor beams. Nat Photon 2011; 5: 514-515. DOI: 10.1038/nphoton.2011.201.
  5. Dogariu A, Sukhov S, Saenz JJ. Optically induced “negative forces”. Nat Photon 2013; 7: 24-27. DOI: 10.1038/nphoton.2012.315.
  6. Kajorndejnukul V, Ding W, Sukhov S, Qiu C-W, Dogariu A. Linear momentum increase and negative optical forces at dielectric interface. Nat Photon 2013; 7: 787-790. DOI: 10.1038/nphoton.2013.192.
  7. Shvedov V, Davoyan A, Hnatovsky C, Engheta N, Krolikowski W. A long-range polarization-controlled optical tractor beam. Nat Photon 2014; 8: 846-850. DOI: 10.1038/nphoton.2014.242.
  8. Carretero L, Acebal P, Garcia C, Blaya S. Periodic trajectories obtained with an active tractor beam using azimuthal polarization: design of particle exchanger. IEEE Photon J 2015; 7(1): 3400112. DOI: 10.1109/JPHOT.2015.2402123.
  9. Mitri FG. Optical Bessel tractor beam on active dielectric Rayleigh prolate and oblate spheroids. J Opt Soc Am B. 2017; 34(5): 899-908. DOI: 10.1364/JOSAB.34.000899.
  10. Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc R Soc A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  11. Ignatovsky VS. Diffraction by a lens having arbitrary opening. Transactions of the Optical Institute of Petrograd 1919; 1: IV.
  12. Monteiro PB, Neto PAM, Nessenzveig HM. Angular momentum of focused beams: beyond the paraxial approximation. Phys Rev A 2009; 79(3): 033830. DOI: 10.1103/PhysRevA.79.033830.
  13. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens [In Russian]. Computer optics 2017; 41(5): 645-653. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  14. Mitri FG. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves. J Opt Soc Am A 2016; 33(9): 1661-1667. DOI: 10.1364/JOSAA.33.001661.
  15. Salem MA, Bagci H. Energy flow characteristics of vector X-waves. Opt Express 2011; 19(9): 8526-8532. DOI: 10.1364/OE.19.008526.
  16. Vaveliuk P, Martinez-Matos O. Negative propagation effect in nonparaxial Airy beams. Opt Express 2012; 20(24): 26913-26921. DOI: 10.1364/OE.20.026913.
  17. Berry MV. Quantum backflow, negative kinetic energy, and optical retro-propagation. J Phys A: Mathem & Theor 2010; 43(41): 415302. DOI: 10.1088/1751-8113/43/41/415302.
  18. Kotlyar VV, Kovalev AA. Circularly polarized Hankel vortices. Opt Express 2017; 25(7): 7778-7790. DOI: 10.1364/OE.25.007778.
  19. Kotlyar VV, Kovalev AA. Angular momentum density of a circularly polarized paraxial optical vortex [In Russian]. Computer Optics 2018; 42(1): 5-12. DOI: 10.18287/2412-6179-2018-42-1-5-12.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20